图书介绍

群论导引PDF|Epub|txt|kindle电子书版本网盘下载

群论导引
  • 徐振环编 著
  • 出版社: 哈尔滨:黑龙江科学技术出版社
  • ISBN:13217·122
  • 出版时间:1985
  • 标注页数:320页
  • 文件大小:7MB
  • 文件页数:326页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

群论导引PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第一章 矢量空间1

1 集合与映射1

2 集合中的等价关系6

3 矢量空间9

4 线性映射17

5 线性变换与线性变换矩阵24

6 线性变换的不变子空间34

7 内积空间37

第二章 群的基本知识48

1 群的定义和例子48

2 子群和陪集52

3 共轭元素和类56

4 不变子群和商群59

5 群的同构与同态63

6 对称群68

7 凯来(Cayley)定理74

第三章 群表示78

1 群表示与表示空间78

2 群表示实例85

3 一些重要群表示概念89

4 幺正表示(酉表示)95

5 舒尔(Schur)引理102

6 正交关系107

7 群表示的特征标111

8 对两个定理的补充证明117

第四章 群代数与对称群129

1 群代数与群的正则表示129

2 群代数的分解134

3 幂等元素141

4 简单矩阵代数143

5 群代数的双边理想的性质147

6 对称群的基础知识152

7 杨氏图和杨氏算子155

8 群Sm的不可约表示的特征标和维数165

9 计算Sm不可约表示维数和特征标的其他方法172

10 群Sm的不可约表示矩阵的计算180

第五章 李群和李代数191

1 连续群和李群的定义191

2 李群的例子196

3 无穷小生成元201

4 结构常数211

5 有限大群元的指数形式217

6 连通李群和紧致李群221

7 李代数227

8 李代数同李群的关系232

9 半单纯李群和半单纯李代数以及它们的不可约表示235

10.半单纯李代数的标准形式246

11 根矢量的性质254

12 根图260

第六章 一般线性群的不可约张量表示269

1 一般线性群的高秩张量表示269

2 用对称群群代数元素约化张量空间273

3 例子282

4 不可约张量表示维数的计算288

5 群GL(n,C)的分支律293

6 对称群表示扩大积及GL(n,G)表示内积的约化297

7 GL(n,C)的子群的不可约表示304

附录:黎曼空间与度规张量313

热门推荐