图书介绍

ALGEBRAPDF|Epub|txt|kindle电子书版本网盘下载

ALGEBRA
  • SAUNDERS MACLANE 著
  • 出版社: MACMILLAN PUBLISHING CO INC
  • ISBN:
  • 出版时间:1979
  • 标注页数:586页
  • 文件大小:21MB
  • 文件页数:593页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

ALGEBRAPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

CHAPTER Ⅰ Sets,Functions,and Integers1

1.Sets1

2.Functions4

3.Relations and Binary Operations10

4.The Natural Numbers15

5.Addition and Multiplication18

6.Inequalities20

7.The Integers23

8.The Integers Modulo n28

9.Equivalence Relations and Quotient Sets33

10.Morphisms37

11.Semigroups and Monoids39

CHAPTER Ⅱ Groups43

1.Groups and Symmetry43

2.Rules of Calculation47

3.Cyclic Groups51

4.Subgroups56

5.Defining Relations59

6.Symmetric and Alternating Groups63

7.Transformation Groups68

8.Cosets72

9.Kernel and Image75

10.Quotient Groups79

CHAPTER Ⅲ Rings85

1.Axioms for Rings85

2.Constructions for Rings90

3.Quotient Rings95

4.Integral Domains and Fields99

5.The Field of Quotients101

6.Polynomials104

7.Polynomials as Functions109

8.The Division Algorithm111

9.Principal Ideal Domains115

10.Unique Factorization116

11.Prime Fields120

12.The Euclidean Algorithm122

13.Commutative Quotient Rings124

CHAPTERⅣ Universal Constructions129

1.Examples of Universals129

2.Functors131

3.Universal Elements134

4.Polynomials in Several Variables137

5.Categories141

6.Posets and Lattices143

7.Contravariance and Duality146

8.The Category of Sets153

9.The Category of Finite Sets156

CHAPTERⅤ Modules160

1.Sample Modules160

2.Linear Transformations163

3.Submodules167

4.Quotient Modules171

5.Free Modules173

6.Biproducts178

7.Dual Modules185

CHAPTERⅥ Vector Spaces193

1.Bases and Coordinates194

2.Dimension199

3.Constructions for Bases202

4.Dually Paired Vector Spaces207

5.Elementary Operations212

6.Systems of Linear Equations219

CHAPTERⅦ Matrices223

1.Matrices and Free Modules224

2.Matrices and Biproducts232

3.The Matrix of a Map236

4.The Matrix of a Composite240

5.Ranks of Matrices244

6.Invertible Matrices246

7.Change of Bases251

8.Eigenvectors and Eigenvalues257

CHAPTERⅧ Special Fields261

1.Ordered Domains261

2.The Ordered Field Q265

3.Polynomial Equations267

4.Convergence in Ordered Fields269

5.The Real Field R271

6.Polynomials over P274

7.The Complex Plane276

8.The Quaternions281

9.Extended Formal Power Series284

10.Valuations and p-adic Numbers286

CHAPTERⅨ Determinants and Tensor Products293

1.Multilinear and Alternating Functions293

2.Determinants of Matrices296

3.Cofactors and Cramer’s Rule301

4.Determinants of Maps305

5.The Characteristic Polynomial309

6.The Minimal Polynomial312

7.Universal Bilinear Functions318

8.Tensor Products319

9.Exact Sequences326

10.Identities on Tensor Products329

11.Change of Rings331

12.Algebr334

CHAPTERⅩ Bilinear and Quadratic Forms338

1.Bilinear Forms338

2.Symmetric Matrices341

3.Quadratic Forms343

4.Real Quadratic Forms347

5.Inner Products351

6.Ortbonormal Bases355

7.Orthogonal Matrices360

8.The Principal Axis Theorem364

9.Unitaru Spaces369

10.Normal Matrices374

CHAPTERⅪ Similar Matrices and Finite Abelian Groups378

1.Noetherian Modules378

2.Cyclic Modules381

3.Torsion Modules383

4.The Rational Canonical Form for Matrices388

5.Primary Modules392

6.Free Modules397

7.Equivalence of Matrices400

8.The Calculation of Invariant Factors404

CHAPTERⅫ Structure of Groups409

1.Isomorphism Theorems409

2.Group Extensions413

3.Characteristic Subgroups417

4.Conjugate Classes419

5.The Sylow Theorems422

6.Nilpotent Groups426

7.Solvable Groups428

8.The Jordan-Holder Theorem430

9.Simplicity of An433

CHAPTERⅩⅢ Galois Theory436

1.Quadratic and Cubic Equations436

2.Algebraic and Transcendental Elements439

3.Degrees442

4.Ruler and Compass445

5.Splitting Fields446

6.Galois Groups of Polynomials450

7.Separable Polynomials453

8.Finite Fields456

9.Norma!Extensions458

10.The Fundamental Theorem462

11.The Solution of Equations by Radicals465

CHAPTERⅩⅣ Lattices470

1.Posets:Duality Principle470

2.Lattice Identities473

3.Sublattices and Products of Lattices476

4.Modular Lattices478

5.Jordan-Holder-Dedekind Theorem480

6.Distributive Lattices483

7.Rings of Sets485

8.Boolean Algebras487

9.Free Boolean Algebras491

CHAPTERⅩⅤ Categories and Adjoint Functors495

1.Categories495

2.Functors501

3.Contravariant Functors504

4.Natural Transformations506

5.Representable Functors and Universal Elements511

6.Adjoint Functors517

CHAPTERⅩⅥ Multilinear Algebra522

1.Iterated Tensor Products522

2.Spaces of Tensors524

3.Graded Modules530

4.Graded Algebras533

5.The Graded Tensor Algebra539

6.The Exterior Algebra of a Module543

7.Determinants by Exterior Algebra547

8.Subspaces by Exterior Algebra552

9.Duality in Exterior Algebra555

10.Alternating Forms and Skew-Symmetric Tensors558

Bibliography561

Index565

热门推荐