图书介绍

FUNDAMENTALS OF FLUID MECHANICSPDF|Epub|txt|kindle电子书版本网盘下载

FUNDAMENTALS OF FLUID MECHANICS
  • BRUCE R. MUNSON 著
  • 出版社: NEW YORK
  • ISBN:
  • 出版时间:1994
  • 标注页数:893页
  • 文件大小:111MB
  • 文件页数:913页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

FUNDAMENTALS OF FLUID MECHANICSPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1INTRODUCTION3

1.1 Some Characteristics of Fluids4

1.2 Dimensions,Dimensional Homogeneity,and Units5

1.2.1 Systems of Units8

1.3 Analysis of Fluid Behavior13

1.4 Measures of Fluid Mass and Weight13

1.4.1 Density13

1.4.2 Specific Weight15

1.4.3 Specific Gravity15

1.5 Ideal Gas Law15

1.6 Viscosity18

1.7 Compressibility of Fluids24

1.7.1 Bulk Modulus24

1.7.2 Compression and Expansion of Gases25

1.7.3 Speed of Sound26

1.8 Vapor Pressure28

1.9 Surface Tension28

1.10 A Brief Look Back in History31

References33

Problems34

2FLUID STATI CS41

2.1 Pressure at a Point41

2.2 Basic Equation for Pressure Field42

2.3 Pressure Variation in a Fluid at Rest44

2.3.1 Incompressible Fluid45

2.3.2 Compressible Fluid48

2.4 Standard Atmosphere50

2.5 Measurement of Pressure51

2.6 Manometry53

2.6.1 Piezometer Tube53

2.6.2 U-Tube Manometer54

2.6.3 Inclined-Tube Manometer58

2.7 Mechanical and Electronic Pressure Measuring Devices58

2.8 Hydrostatic Force on a Plane Surface61

2.9 Pressure Prism67

2.10 Hydrostatic Force on a Curved Surface71

2.11 Buoyancy,Flotation,and Stability74

2.11.1 Archimedes’ Principle74

2.11.2 Stability76

2.12 Pressure Variation in a Fluid with Rigid-Body Motion78

2.12.1 Linear Motion78

2.12.2 Rigid-Body Rotation81

References84

Problems84

3ELEMENTARY FLUID DYNAMICS—THE BERNOULLI EQUATION101

3.1 Newton’s Second Law101

3.2 F = ma Along a Streamline104

3.3 F = ma Normal to a Streamline109

3.4 Physical Interpretation112

3.5 Static,Stagnation,Dynamic,and Total Pressure115

3.6 Examples of Use of the Bernoulli Equation119

3.6.1 Free Jets120

3.6.2 Confined Flows122

3.6.3 Flowrate Measurement130

3.7 The Energy Line and the Hydraulic Grade Line135

3.8 Restrictions on the Use of the Bernoulli Equation138

3.8.1 Compressibility Effects138

3.8.2 Unsteady Effects141

3.8.3 Rotational Effects145

3.8.4 Other Restrictions146

References147

Problems147

4FLUID KINEMATICS165

4.1 The Velocity Field165

4.1.1 Eulerain and Lagrangian Flow Descriptions166

4.1.2 One-,Two-,and Three-Dimensional Flows169

4.1.3 Steady and Unsteady Flows170

4.1.4 Streamlines,Streaklines,and Pathlines171

4.2 The Acceleration Field175

4.2.1 The Material Derivative176

4.2.2 Unsteady Effects179

4.2.3 Convective Effects180

4.2.4 Streamline Coordinates183

4.3 Control Volume and System Representation185

4.4 The Reynolds Transport Theorem186

4.4.1 Derivation of the Reynolds Transport Theorem189

4.4.2 Physical Interpretation194

4.4.3 Relationship to Material Derivative197

4.4.4 Steady Effects197

4.4.5 Unsteady Effects198

4.4.6 Moving Control Volumes199

4.4.7 Selection of a Control Volume201

References202

Problems202

5FINITE CONTROL VOLUME ANALYSIS211

5.1 Conservation of Mass—The Continuity Equation212

5.1.1 Derivation of the Continuity Equation212

5.1.2 Fixed,Nondeforming Control Volume214

5.1.3 Moving,Nondeforming Control Volume221

5.1.4 Deforming Control Volume224

5.2 Newton’s Second Law—The Linear Momentum and Moment-of-Momentum Equations227

5.2.1 Derivation of the Linear Momentum Equation227

5.2.2 Application of the Linear Momentum Equation229

5.2.3 Derivation of the Moment-of-Momentum Equation246

5.2.4 Application of the Moment-of-Momentum Equation248

5.3 First Law of Thermodynamics—The Energy Equation257

5.3.1 Derivation of the Energy Equation257

5.3.2 Application of the Energy Equation260

5.3.3 Comparison of the Energy Equation with the Bernoulli Equation265

5.3.4 Application of the Energy Equation to Nonuniform Flows272

5.3.5 Combination of the Energy Equation and the Moment-of-Momentum Equation277

5.4 Second Law of Thermodynamics—Irreversible Flow278

5.4.1 Semi-infinitesimal Control Volume Statement of the Energy Equation278

5.4.2 Semi-infinitesimal Control Volume Statement of the Second Law of Thermodynamics279

5.4.3 Combination of the Equations of the First and Second Laws of Thermodynamics280

5.4.4 Application of the Loss Form of the Energy Equation281

References283

Problems283

6DIFFERENTIAL ANALYSIS OF FLUID FLOW309

6.1 Fluid Element Kinematics310

6.1.1 Velocity and Acceleration Fields Revisited310

6.1.2 Linear Motion and Deformation311

6.1.3 Angular Motion and Deformation313

6.2 Conservation of Mass316

6.2.1 Differential Form of Continuity Equation316

6.2.2 Cylindrical Polar Coordinates319

6.2.3 The Stream Function320

6.3 Conservation of Linear Momentum323

6.3.1 Description of Forces Acting on Differential Element324

6.3.2 Equations of Motion326

6.4 Inviscid Flow327

6.4.1 Euler’s Equations of Motion327

6.4.2 The Bernoulli Equation328

6.4.3 Irrotational Flow330

6.4.4 The Bernoulli Equation for Irrotational Flow332

6.4.5 The Velocity Potential332

6.5 Some Basic,Plane Potential Flows337

6.5.1 Uniform Flow338

6.5.2 Source and Sink339

6.5.3 Vortex341

6.5.4 Doublet344

6.6 Superposition of Basic,Plane Potential Flows346

6.6.1 Source in a Uniform Stream—Half-Body347

6.6.2 Rankine Ovals350

6.6.3 Flow Around a Circular Cylinder352

6.7 Other Aspects of Potential Flow Analysis358

6.8 Viscous Flow359

6.8.1 Stress-Deformation Relationships359

6.8.2 The Naiver-Stokes Equations360

6.9 Some Simple Solutions for Viscous,Incompressible Fluids362

6.9.1 Steady,Laminar Flow Between Fixed Parallel Plates362

6.9.2 Couette Flow365

6.9.3 Steady,Laminar Flow in Circular Tubes367

6.9.4 Steady,Axial,Laminar Flow in an Annulus370

6.10 Other Aspects of Differential Analysis372

6.10.1 Numerical Methods373

References381

Problems382

7SIMILITUDE,DIMENSIONAL ANALYSIS,AND MODELING395

7.1 Dimensional Analysis395

7.2 Buckingham Pi Theorem398

7.3 Determination of Pi Terms398

7.4 Some Additional Comments About Dimensional Analysis405

7.4.1 Selection of Variables405

7.4.2 Determination of Reference Dimensions407

7.4.3 Uniqueness of Pi Terms409

7.5 Determination of Pi Terms by Inspection410

7.6 Common Dimensionless Groups in Fluid Mechanics412

7.7 Correlation of Experimental Data416

7.7.1 Problems with One Pi Term416

7.7.2 Problems with Two or More Pi Terms418

7.8 Modeling and Similitude421

7.8.1 Theory of Models421

7.8.2 Model Scales426

7.8.3 Practical Aspects of Using Models426

7.9 Some Typical Model Studies428

7.9.1 Flow Through Closed Conduits428

7.9.2 Flow Around Immersed Bodies431

7.9.3 Flow with a Free Surface435

7.10 Similitude Based on Governing Differential Equations439

References442

Problems442

8VISCOUS FLOW IN PIPES455

8.1 General Characteristics of Pipe Flow456

8.1.1 Laminar or Turbulent Flow457

8.1.2 Entrance Region and Fully Developed Flow459

8.1.3 Pressure and Shear Stress460

8.2 Fully Developed Laminar Flow462

8.2.1 From F = ma Applied to a Fluid Element462

8.2.2 From the Navier-Stokes Equations467

8.2.3 From Dimensional Analysis469

8.2.4 Energy Considerations470

8.3 Fully Developed Turbulent Flow473

8.3.1 Transition from Laminar to Turbulent Flow473

8.3.2 Turbulent Shear Stress475

8.3.3 Turbulent Velocity Profile480

8.4 Dimensional Analysis of Pipe Flow484

8.4.1 The Moody Chart484

8.4.2 Minor Losses492

8.4.3 Noncircular Conduits504

8.5 Pipe Flow Examples508

8.5.1 Single Pipes508

8.5.2 Multiple Pipe Systems520

8.6 Pipe Flowrate Measurement526

8.6.1 Pipe Flowrate Meters526

8.6.2 Volume Flow Meters531

References533

Problems534

9FLOW OVER IMMERSED BODIES549

9.1 General External Flow Characteristics550

9.1.1 Life and Drag Concepts552

9.1.2 Characteristics of Flow Past an Object555

9.2 Boundary Layer Characteristics560

9.2.1 Boundary Layer Structure and Thickness on a Flat Plate560

9.2.2 Prandtl/Blasius Boundary Layer Solution564

9.2.3 Momentum Integral BoundaryLayer Equation for a Flat Plate568

9.2.4 Transition from Laminar to Turbulent Flow575

9.2.5 Turbulent Boundary Layer Flow577

9.2.6 Effects of Pressure Gradient583

9.2.7 Momentum Integral Boundary Layer Equation with Nonzero Pressure Gradient588

9.3 Drag589

9.3.1 Friction Drag589

9.3.2 Pressure Drag591

9.3.3 Drag Coefficient Data and Examples594

9.4 Lift611

9.4.1 Surface Pressure Distribution611

9.4.2 Circulation622

References626

Problems627

10OPEN-CHANNEL FLOW639

10.1 General Characteristics of Open-Channel Flow640

10.2 Surface Waves641

10.2.1 Wave Speed641

10.2.2 Froude Number Effects644

10.3 Energy Considerations645

10.3.1 Specific Energy646

10.3.2 Channel Depth Variations651

10.4 Uniform Depth Channel Flow652

10.4.1 Uniform Flow Approximations652

10.4.2 The Chezy and Manning Equations653

10.4.3 Uniform Depth Examples656

10.5 Gradually Varied Flow665

10.5.1 Classification of Surface Shapes666

10.5.2 Examples of Gradually Varied Flows667

10.6 Rapidly Varied Flow669

10.6.1 The Hydraulic Jump670

10.6.2 Sharp-Crested Weirs676

10.6.3 Broad-Crested Weirs680

10.6.4 Underflow Gates683

References686

Problems686

11COMPRESSIBLE FLOW697

11.1 Ideal Gas Relationships698

11.2 Mach Number and Speed of Sound704

11.3 Categories of Compressible Flow707

11.4 Isentropic Flow of an Ideal Gas711

11.4.1 Effect of Variations in Flow Cross-Section Area712

11.4.2 Converging-Diverging Duct Flow714

11.4.3 Constant-Area Duct Flow732

11.5 Nonisentropic Flow of an Ideal Gas734

11.5.1 Adiabatic Constant Area Duct Flow with Friction (Fanno Flow)734

11.5.2 Frictionless Constant Area Duct Flow with Heat Transfer (Rayleigh Flow)749

11.5.3 Normal Shock Waves759

11.6 Analogy Between Compressible and Open-Channel Flows772

11.7 Two-Dimensional Compressible Flow773

References776

Problems777

12TURBOMACHINES783

12.1 Introduction784

12.2 Basic Energy Considerations786

12.3 Basic Angular Momentum Considerations790

12.4 The Centrifugal Pump792

12.4.1 Theoretical Considerations794

12.4.2 Pump Performance Characteristics798

12.4.3 Net Positive Suction Head (NPSH)800

12.4.4 System Characteristics and Pump Selection802

12.5 Dimensionless Parameters and Similarity Laws806

12.5.1 Special Pump Scaling Laws809

12.5.2 Specific Speed811

12.5.3 Suction Specific Speed811

12.6 Axial-Flow and Mixed-Flow Pumps812

12.7 Fans814

12.8 Turbines815

12.8.1 Impulse Turbines817

12.8.2 Reaction Turbines827

12.9 Compressible Flow Turbomachines831

12.9.1 Compressors832

12.9.2 Compressible Flow Turbines836

References839

Problems840

A UNIT CONVERSION TABLES850

B PHYSICAL PROPERTIES OF FLUIDS854

C PROPERTIES OF THE U.S. STANDARD ATMOSPHERE860

D ALTERNATE METHOD FOR DETERMINATION OF PI TERMS862

E COMPRESSIBLE FLOW TABLES FOR AN IDEAL GAS866

ANSWERS877

INDEX885

热门推荐