图书介绍
FUNDAMENTALS OF FLUID MECHANICSPDF|Epub|txt|kindle电子书版本网盘下载
- BRUCE R. MUNSON 著
- 出版社: NEW YORK
- ISBN:
- 出版时间:1994
- 标注页数:893页
- 文件大小:111MB
- 文件页数:913页
- 主题词:
PDF下载
下载说明
FUNDAMENTALS OF FLUID MECHANICSPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1INTRODUCTION3
1.1 Some Characteristics of Fluids4
1.2 Dimensions,Dimensional Homogeneity,and Units5
1.2.1 Systems of Units8
1.3 Analysis of Fluid Behavior13
1.4 Measures of Fluid Mass and Weight13
1.4.1 Density13
1.4.2 Specific Weight15
1.4.3 Specific Gravity15
1.5 Ideal Gas Law15
1.6 Viscosity18
1.7 Compressibility of Fluids24
1.7.1 Bulk Modulus24
1.7.2 Compression and Expansion of Gases25
1.7.3 Speed of Sound26
1.8 Vapor Pressure28
1.9 Surface Tension28
1.10 A Brief Look Back in History31
References33
Problems34
2FLUID STATI CS41
2.1 Pressure at a Point41
2.2 Basic Equation for Pressure Field42
2.3 Pressure Variation in a Fluid at Rest44
2.3.1 Incompressible Fluid45
2.3.2 Compressible Fluid48
2.4 Standard Atmosphere50
2.5 Measurement of Pressure51
2.6 Manometry53
2.6.1 Piezometer Tube53
2.6.2 U-Tube Manometer54
2.6.3 Inclined-Tube Manometer58
2.7 Mechanical and Electronic Pressure Measuring Devices58
2.8 Hydrostatic Force on a Plane Surface61
2.9 Pressure Prism67
2.10 Hydrostatic Force on a Curved Surface71
2.11 Buoyancy,Flotation,and Stability74
2.11.1 Archimedes’ Principle74
2.11.2 Stability76
2.12 Pressure Variation in a Fluid with Rigid-Body Motion78
2.12.1 Linear Motion78
2.12.2 Rigid-Body Rotation81
References84
Problems84
3ELEMENTARY FLUID DYNAMICS—THE BERNOULLI EQUATION101
3.1 Newton’s Second Law101
3.2 F = ma Along a Streamline104
3.3 F = ma Normal to a Streamline109
3.4 Physical Interpretation112
3.5 Static,Stagnation,Dynamic,and Total Pressure115
3.6 Examples of Use of the Bernoulli Equation119
3.6.1 Free Jets120
3.6.2 Confined Flows122
3.6.3 Flowrate Measurement130
3.7 The Energy Line and the Hydraulic Grade Line135
3.8 Restrictions on the Use of the Bernoulli Equation138
3.8.1 Compressibility Effects138
3.8.2 Unsteady Effects141
3.8.3 Rotational Effects145
3.8.4 Other Restrictions146
References147
Problems147
4FLUID KINEMATICS165
4.1 The Velocity Field165
4.1.1 Eulerain and Lagrangian Flow Descriptions166
4.1.2 One-,Two-,and Three-Dimensional Flows169
4.1.3 Steady and Unsteady Flows170
4.1.4 Streamlines,Streaklines,and Pathlines171
4.2 The Acceleration Field175
4.2.1 The Material Derivative176
4.2.2 Unsteady Effects179
4.2.3 Convective Effects180
4.2.4 Streamline Coordinates183
4.3 Control Volume and System Representation185
4.4 The Reynolds Transport Theorem186
4.4.1 Derivation of the Reynolds Transport Theorem189
4.4.2 Physical Interpretation194
4.4.3 Relationship to Material Derivative197
4.4.4 Steady Effects197
4.4.5 Unsteady Effects198
4.4.6 Moving Control Volumes199
4.4.7 Selection of a Control Volume201
References202
Problems202
5FINITE CONTROL VOLUME ANALYSIS211
5.1 Conservation of Mass—The Continuity Equation212
5.1.1 Derivation of the Continuity Equation212
5.1.2 Fixed,Nondeforming Control Volume214
5.1.3 Moving,Nondeforming Control Volume221
5.1.4 Deforming Control Volume224
5.2 Newton’s Second Law—The Linear Momentum and Moment-of-Momentum Equations227
5.2.1 Derivation of the Linear Momentum Equation227
5.2.2 Application of the Linear Momentum Equation229
5.2.3 Derivation of the Moment-of-Momentum Equation246
5.2.4 Application of the Moment-of-Momentum Equation248
5.3 First Law of Thermodynamics—The Energy Equation257
5.3.1 Derivation of the Energy Equation257
5.3.2 Application of the Energy Equation260
5.3.3 Comparison of the Energy Equation with the Bernoulli Equation265
5.3.4 Application of the Energy Equation to Nonuniform Flows272
5.3.5 Combination of the Energy Equation and the Moment-of-Momentum Equation277
5.4 Second Law of Thermodynamics—Irreversible Flow278
5.4.1 Semi-infinitesimal Control Volume Statement of the Energy Equation278
5.4.2 Semi-infinitesimal Control Volume Statement of the Second Law of Thermodynamics279
5.4.3 Combination of the Equations of the First and Second Laws of Thermodynamics280
5.4.4 Application of the Loss Form of the Energy Equation281
References283
Problems283
6DIFFERENTIAL ANALYSIS OF FLUID FLOW309
6.1 Fluid Element Kinematics310
6.1.1 Velocity and Acceleration Fields Revisited310
6.1.2 Linear Motion and Deformation311
6.1.3 Angular Motion and Deformation313
6.2 Conservation of Mass316
6.2.1 Differential Form of Continuity Equation316
6.2.2 Cylindrical Polar Coordinates319
6.2.3 The Stream Function320
6.3 Conservation of Linear Momentum323
6.3.1 Description of Forces Acting on Differential Element324
6.3.2 Equations of Motion326
6.4 Inviscid Flow327
6.4.1 Euler’s Equations of Motion327
6.4.2 The Bernoulli Equation328
6.4.3 Irrotational Flow330
6.4.4 The Bernoulli Equation for Irrotational Flow332
6.4.5 The Velocity Potential332
6.5 Some Basic,Plane Potential Flows337
6.5.1 Uniform Flow338
6.5.2 Source and Sink339
6.5.3 Vortex341
6.5.4 Doublet344
6.6 Superposition of Basic,Plane Potential Flows346
6.6.1 Source in a Uniform Stream—Half-Body347
6.6.2 Rankine Ovals350
6.6.3 Flow Around a Circular Cylinder352
6.7 Other Aspects of Potential Flow Analysis358
6.8 Viscous Flow359
6.8.1 Stress-Deformation Relationships359
6.8.2 The Naiver-Stokes Equations360
6.9 Some Simple Solutions for Viscous,Incompressible Fluids362
6.9.1 Steady,Laminar Flow Between Fixed Parallel Plates362
6.9.2 Couette Flow365
6.9.3 Steady,Laminar Flow in Circular Tubes367
6.9.4 Steady,Axial,Laminar Flow in an Annulus370
6.10 Other Aspects of Differential Analysis372
6.10.1 Numerical Methods373
References381
Problems382
7SIMILITUDE,DIMENSIONAL ANALYSIS,AND MODELING395
7.1 Dimensional Analysis395
7.2 Buckingham Pi Theorem398
7.3 Determination of Pi Terms398
7.4 Some Additional Comments About Dimensional Analysis405
7.4.1 Selection of Variables405
7.4.2 Determination of Reference Dimensions407
7.4.3 Uniqueness of Pi Terms409
7.5 Determination of Pi Terms by Inspection410
7.6 Common Dimensionless Groups in Fluid Mechanics412
7.7 Correlation of Experimental Data416
7.7.1 Problems with One Pi Term416
7.7.2 Problems with Two or More Pi Terms418
7.8 Modeling and Similitude421
7.8.1 Theory of Models421
7.8.2 Model Scales426
7.8.3 Practical Aspects of Using Models426
7.9 Some Typical Model Studies428
7.9.1 Flow Through Closed Conduits428
7.9.2 Flow Around Immersed Bodies431
7.9.3 Flow with a Free Surface435
7.10 Similitude Based on Governing Differential Equations439
References442
Problems442
8VISCOUS FLOW IN PIPES455
8.1 General Characteristics of Pipe Flow456
8.1.1 Laminar or Turbulent Flow457
8.1.2 Entrance Region and Fully Developed Flow459
8.1.3 Pressure and Shear Stress460
8.2 Fully Developed Laminar Flow462
8.2.1 From F = ma Applied to a Fluid Element462
8.2.2 From the Navier-Stokes Equations467
8.2.3 From Dimensional Analysis469
8.2.4 Energy Considerations470
8.3 Fully Developed Turbulent Flow473
8.3.1 Transition from Laminar to Turbulent Flow473
8.3.2 Turbulent Shear Stress475
8.3.3 Turbulent Velocity Profile480
8.4 Dimensional Analysis of Pipe Flow484
8.4.1 The Moody Chart484
8.4.2 Minor Losses492
8.4.3 Noncircular Conduits504
8.5 Pipe Flow Examples508
8.5.1 Single Pipes508
8.5.2 Multiple Pipe Systems520
8.6 Pipe Flowrate Measurement526
8.6.1 Pipe Flowrate Meters526
8.6.2 Volume Flow Meters531
References533
Problems534
9FLOW OVER IMMERSED BODIES549
9.1 General External Flow Characteristics550
9.1.1 Life and Drag Concepts552
9.1.2 Characteristics of Flow Past an Object555
9.2 Boundary Layer Characteristics560
9.2.1 Boundary Layer Structure and Thickness on a Flat Plate560
9.2.2 Prandtl/Blasius Boundary Layer Solution564
9.2.3 Momentum Integral BoundaryLayer Equation for a Flat Plate568
9.2.4 Transition from Laminar to Turbulent Flow575
9.2.5 Turbulent Boundary Layer Flow577
9.2.6 Effects of Pressure Gradient583
9.2.7 Momentum Integral Boundary Layer Equation with Nonzero Pressure Gradient588
9.3 Drag589
9.3.1 Friction Drag589
9.3.2 Pressure Drag591
9.3.3 Drag Coefficient Data and Examples594
9.4 Lift611
9.4.1 Surface Pressure Distribution611
9.4.2 Circulation622
References626
Problems627
10OPEN-CHANNEL FLOW639
10.1 General Characteristics of Open-Channel Flow640
10.2 Surface Waves641
10.2.1 Wave Speed641
10.2.2 Froude Number Effects644
10.3 Energy Considerations645
10.3.1 Specific Energy646
10.3.2 Channel Depth Variations651
10.4 Uniform Depth Channel Flow652
10.4.1 Uniform Flow Approximations652
10.4.2 The Chezy and Manning Equations653
10.4.3 Uniform Depth Examples656
10.5 Gradually Varied Flow665
10.5.1 Classification of Surface Shapes666
10.5.2 Examples of Gradually Varied Flows667
10.6 Rapidly Varied Flow669
10.6.1 The Hydraulic Jump670
10.6.2 Sharp-Crested Weirs676
10.6.3 Broad-Crested Weirs680
10.6.4 Underflow Gates683
References686
Problems686
11COMPRESSIBLE FLOW697
11.1 Ideal Gas Relationships698
11.2 Mach Number and Speed of Sound704
11.3 Categories of Compressible Flow707
11.4 Isentropic Flow of an Ideal Gas711
11.4.1 Effect of Variations in Flow Cross-Section Area712
11.4.2 Converging-Diverging Duct Flow714
11.4.3 Constant-Area Duct Flow732
11.5 Nonisentropic Flow of an Ideal Gas734
11.5.1 Adiabatic Constant Area Duct Flow with Friction (Fanno Flow)734
11.5.2 Frictionless Constant Area Duct Flow with Heat Transfer (Rayleigh Flow)749
11.5.3 Normal Shock Waves759
11.6 Analogy Between Compressible and Open-Channel Flows772
11.7 Two-Dimensional Compressible Flow773
References776
Problems777
12TURBOMACHINES783
12.1 Introduction784
12.2 Basic Energy Considerations786
12.3 Basic Angular Momentum Considerations790
12.4 The Centrifugal Pump792
12.4.1 Theoretical Considerations794
12.4.2 Pump Performance Characteristics798
12.4.3 Net Positive Suction Head (NPSH)800
12.4.4 System Characteristics and Pump Selection802
12.5 Dimensionless Parameters and Similarity Laws806
12.5.1 Special Pump Scaling Laws809
12.5.2 Specific Speed811
12.5.3 Suction Specific Speed811
12.6 Axial-Flow and Mixed-Flow Pumps812
12.7 Fans814
12.8 Turbines815
12.8.1 Impulse Turbines817
12.8.2 Reaction Turbines827
12.9 Compressible Flow Turbomachines831
12.9.1 Compressors832
12.9.2 Compressible Flow Turbines836
References839
Problems840
A UNIT CONVERSION TABLES850
B PHYSICAL PROPERTIES OF FLUIDS854
C PROPERTIES OF THE U.S. STANDARD ATMOSPHERE860
D ALTERNATE METHOD FOR DETERMINATION OF PI TERMS862
E COMPRESSIBLE FLOW TABLES FOR AN IDEAL GAS866
ANSWERS877
INDEX885