图书介绍
DIFFERENTIAL FORMS WITH APPLICATIONS TO THE PHYSICAL SCIENCESPDF|Epub|txt|kindle电子书版本网盘下载
- HARLEY FLANDERS 著
- 出版社: ACADEMIC PRESS
- ISBN:
- 出版时间:1963
- 标注页数:203页
- 文件大小:5MB
- 文件页数:212页
- 主题词:
PDF下载
下载说明
DIFFERENTIAL FORMS WITH APPLICATIONS TO THE PHYSICAL SCIENCESPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Ⅰ.Introduction1
1.1.Exterior Differential Forms1
1.2.Comparison with Tensors2
Ⅱ.Exterior algebra5
2.1.The Space of p-vectors5
2.2.Determinants7
2.3.Exterior Products8
2.4.Linear Transformations10
2.5.Inner Product Spaces12
2.6.Inner Products of p-vectors14
2.7.The Star Operator15
2.8.Problems17
Ⅲ.The Exterior Derivative19
3.1.Differential Forms19
3.2.Exterior Derivative20
3.3.Mappings22
3.4.Change of Coordinates25
3.5.An Example from Mechanics26
3.6.Converse of the Poincaré Lemma27
3.7.An Example30
3.8.Further Remarks30
3.9.Problems31
Ⅳ.Applications32
4.1.Moving Frames in E332
4.2.Relation between Orthogonal and Skew-symmetric Matrices35
4.3.The 6-dimensional Frame Space37
4.4.The Laplacian,Orthogonal Coordinates38
4.5.Surfaces40
4.6.Maxwell's Field Equations44
4.7.Problems48
Ⅴ.Manifolds and Integration49
5.1.Introduction49
5.2.Manifolds49
5.3.Tangent Vectors53
5.4.Differential Forms55
5.5.Euclidean Simplices57
5.6.Chains and Boundaries61
6.7.Integration of Forms63
5.8.Stokes' Theorem64
5.9.Periods and De Rham's Theorems66
5.10.Surfaces; Some Examples69
5.11.Mappings of Chains71
5.12.Problems73
Ⅵ.Applications in Euclidean space74
6.1.Volumes in En74
6.2.Winding Numbers,Degree of a Mapping77
6.3.The Hopf Invariant79
6.4.Linking Numbers,the Gauss Integral,Ampere's Law79
Ⅶ.Applications to Differential Equations82
7.1.Potential Theory82
7.2.The Heat Equation90
7.3.The Frobenius Integration Theorem92
7.4.Applications of the Frobenius Theorem102
7.5.Systems of Ordinary Equations106
7.6.The Third Lie Theorem108
Ⅷ.Applications to Differential Geometry112
8.1.Surfaces(Continued)112
8.2.Hypersurfaces116
8.3.Riemannian Geometry,Local Theory127
8.4.Riemannian Geometry,Harmonic Integrals136
8.5.Affine Connection143
8.6.Problems148
Ⅸ.Application to Group Theory150
9.1.Lie Groups150
9.2.Examples of Lie Groups151
9.3.Matrix Groups153
9.4.Examples of Matrix Groups154
9.5.Bi-invariant Forms158
9.6.Problems161
Ⅹ.Applications to Physics163
10.1.Phase and State Space163
10.2.Hamiltonian Systems165
10.3.Integral-invariants171
10.4.Brackets179
10.5.Contact Transformations183
10.6.Fluid Mechanics188
10.7.Problems193
BIBLIOGRAPHY197
GLOSSARY OF NOTATION199
INDEX201