图书介绍
词义消歧:算法与应用=WORD SENSE DISAMBIGUATION:Algorithms and ApplicationsPDF|Epub|txt|kindle电子书版本网盘下载
![词义消歧:算法与应用=WORD SENSE DISAMBIGUATION:Algorithms and Applications](https://www.shukui.net/cover/2/32734937.jpg)
- 梁利人主编 著
- 出版社:
- ISBN:
- 出版时间:2014
- 标注页数:0页
- 文件大小:69MB
- 文件页数:406页
- 主题词:
PDF下载
下载说明
词义消歧:算法与应用=WORD SENSE DISAMBIGUATION:Algorithms and ApplicationsPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Introduction&Eneko Agirre and Philip Edmonds1
1.1 Word Sense Disambiguation1
1.2 ABrief History of WSD Research4
1.3 What is a Word Sense?8
1.4 Applications of WSD10
1.5 Basic Approaches to WSD12
1.6 State-of-the-Art Performance14
1.7 Promising Directions15
1.8 Overview of This Book19
1.9 Further Reading21
References22
2 Word Senses&Adam Kilgarriff29
2.1 Introduction29
2.2 Lexicographers30
2.3 Philosophy32
2.3.1 Meaning is Something You Do32
2.3.2 The Fregean Tradition and Reification33
2.3.3 Two Incompatible Semantics?33
2.3.4 Implications for Word Senses34
2.4 Lexicalization35
2.5 Corpus Evidence39
2.5.1 Lexicon Size41
2.5.2 Quotations42
2.6 Conclusion43
2.7 Further Reading44
Acknowledgments45
References45
3 Making Sense About Sense&Nancy Ide and Yorick Wilks47
3.1 Introduction47
3.2 WSD and the Lexicographers49
3.3 WSD and Sense Inventories51
3.4 NLP Applications and WSD55
3.5 What Level of Sense Distinctions Do We Need for NLP,If Any?58
3.6 What Now for WSD?64
3.7 Conclusion68
References68
4 Evaluation of WSD Systems&Martha Palmer,Hwee Tou Ng and Hoa Trang Dang75
4.1 Introduction75
4.1.1 Terminology76
4.1.2 Overview80
4.2 Background81
4.2.1 Word Net and Semcor81
4.2.2 The Line and Interest Corpora83
4.2.3 The DSO Corpus84
4.2.4 Open Mind Word Expert85
4.3 Evaluation Using Pseudo-Words86
4.4 Senseval Evaluation Exercises86
4.4.1 Senseval-187
Evaluation and Scoring88
4.4.2 Senseval-288
English All-Words Task89
English Lexical Sample Task89
4.4.3 Comparison of Tagging Exercises91
4.5 Sources of Inter-Annotator Disagreement92
4.6 Granularity of Sense:Groupings for WordNet95
4.6.1 Criteria for WordNet Sense Grouping96
4.6.2Analysis of Sense Grouping97
4.7 Senseval-398
4.8 Discussion99
References102
5 Knowledge-Based Methods for WSD&Rada Mihalcea107
5.1 Introduction107
5.2 Lesk Algorithm108
5.2.1 Variations of the Lesk Algorithm110
Simulated Annealing110
Simplified Lesk Algorithm111
Augmented Semantic Spaces113
Summary113
5.3 Semantic Similarity114
5.3.1 Measures of Semantic Similarity114
5.3.2 Using Semantic Similarity Within a Local Context117
5.3.3 Using Semantic Similarity Within a Global Context118
5.4 Selectional Preferences119
5.4.1 Preliminaries:Learning Word-to-Word Relations120
5.4.2 Learning Selectional Preferences120
5.4.3 Using Selectional Preferences122
5.5 Heuristics for Word Sense Disambiguation123
5.5.1 Most Frequent Sense123
5.5.2 One Sense Per Discourse124
5.5.3 One Sense Per Collocation124
5.6 Knowledge-Based Methods at Senseval-2125
5.7 Conclusions126
References127
6 Unsupervised Corpus-Based Methods for WSD&Ted Pedersen133
6.1 Introduction133
6.1.1 Scope134
6.1.2 Motivation136
Distributional Methods137
Translational Equivalence139
6.1.3 Approaches140
6.2 Type-Based Discrimination141
6.2.1 Representation of Context142
6.2.2 Algorithms145
Latent Semantic Analysis(LSA)146
Hyperspace Analogue to Language(HAL)147
Clustering By Committee(CBC)148
6.2.3 Discussion150
6.3 Token-Based Discrimination150
6.3.1 Representation of Context151
6.3.2 Algorithms151
Context Group Discrimination152
McQuitty's Similarity Analysis154
6.3.3 Discussion157
6.4 Translational Equivalence158
6.4.1 Representation of Context159
6.4.2 Algorithms159
6.4.3 Discussion160
6.5 Conclusions and the Way Forward161
Acknowledgments162
References162
7 Supervised Corpus-Based Methods for WSD&Llu?s Màrquez,Gerard Escudero,David Martínez and German Rigau167
7.1 Introduction to Supervised WSD167
7.1.1 Machine Learning for Classification168
An Example on WSD170
7.2 A Survey of Supervised WSD171
7.2.1 Main Corpora Used172
7.2.2 Main Sense Repositories173
7.2.3 Representation of Examples by Means of Features174
7.2.4 Main Approaches to Supervised WSD175
Probabilistic Methods175
Methods Based on the Similarity of the Examples176
Methods Based on Discriminating Rules177
Methods Based on Rule Combination179
Linear Classifiers and Kernel-Based Approaches179
Discourse Properties:The Yarowsky Bootstrapping Algorithm181
7.2.5 Supervised Systems in the Senseval Evaluations183
7.3 An Empirical Study of Supervised Algorithms for WSD184
7.3.1 Five Learning Algorithms Under Study185
Naive Bayes (NB)185
Exemplar-Based Learning(kNN)186
Decision Lists (DL)187
AdaBoost(AB)187
Support Vector Machines(SVM)189
7.3.2 Empirical Evaluation on the DSO Corpus190
Experiments191
7.4 Current Challenges of the Supervised Approach195
7.4.1 Right-Sized Training Sets195
7.4.2 Porting Across Corpora196
7.4.3 The Knowledge Acquisition Bottleneck197
Automatic Acquisition of Training Examples198
Active Learning199
Combining Training Examples from Different Words199
Parallel Corpora200
7.4.4 Bootstrapping201
7.4.5 Feature Selection and Parameter Optimization202
7.4.6 Combination of Algorithms and Knowledge Sources203
7.5 Conclusions and Future Trends205
Acknowledgments206
References207
8 Knowledge Sources for WSD&Eneko Agirre and Mark Stevenson217
8.1 Introduction217
8.2 Knowledge Sources Relevant to WSD218
8.2.1 Syntactic219
Part of Speech (KS 1)219
Morphology(KS 2)219
Collocations(KS 3)220
Subcategorization(KS 4)220
8.2.2 Semantic220
Frequency of Senses(KS 5)220
Semantic Word Associations(KS 6)221
Selectional Preferences(KS 7)221
Semantic Roles(KS 8)222
8.2.3 Pragmatic/Topical222
Domain(KS 9)222
Topical Word Association(KS 10)222
Pragmatics(KS 11)223
8.3 Features and Lexical Resources223
8.3.1 Target-Word Specific Features224
8.3.2 Local Features225
8.3.3 Global Features227
8.4 Identifying Knowledge Sources inActual Systems228
8.4.1 Senseval-2 Systems229
8.4.2 Senseval-3 Systems231
8.5 Comparison of Experimental Results231
8.5.1 Senseval Results232
8.5.2 Yarowsky and Florian(2002)233
8.5.3 Lee andNg (2002)234
8.5.4 Martínez et al.(2002)237
8.5.5 Agirre and Martínez(2001 a)238
8.5.6 Stevenson and Wilks(2001)240
8.6 Discussion242
8.7 Conclusions245
Acknowledgments246
References247
9 Automatic Acquisition of Lexical Information and Examples&Julio Gonzalo and Felisa Verdejo253
9.1 Introduction253
9.2 Mining Topical Knowledge About Word Senses254
9.2.1 Topic Signatures255
9.2.2 Association of Web Directories to Word Senses257
9.3 Automatic Acquisition of Sense-Tagged Corpora258
9.3.1 Acquisition by Direct Web Searching258
9.3.2 Bootstrapping from Seed Examples261
9.3.3 Acquisition via Web Directories263
9.3.4 Acquisition via Cross-Language Evidence264
9.3.5 Web-Based Cooperative Annotation268
9.4 Discussion269
Acknowledgments271
References272
10 Domain-Specific WSD&Paul Buitelaar,Bernardo Magnini,Carlo Strapparava and Piek Vossen275
10.1 Introduction275
10.2 Approaches to Domain-Specific WSD277
10.2.1 Subject Codes277
10.2.2 Topic Signatures and Topic Variation282
Topic Signatures282
Topic Variation283
10.2.3 Domain Tuning284
Top-down Domain Tuning285
Bottom-up Domain Tuning285
10.3 Domain-Specific Disambiguation in Applications288
10.3.1 User-Modeling forRecommender Systems288
10.3.2 Cross-Lingual Information Retrieval289
10.3.3 The MEANING Project292
10.4 Conclusions295
References296
11 WSD in NLP Applications&Philip Resnik299
11.1 Introduction299
11.2 Why WSD?300
Argument from Faith300
Argument by Analogy301
Argument from Specific Applications302
11.3 Traditional WSD in Applications303
11.3.1 WSD in Traditional Information Retrieval304
11.3.2 WSD in Applications Related to Information Retrieval307
Cross-Language IR308
Question Answering309
Document Classification312
11.3.3 WSD in Traditional Machine Translation313
11.3.4 Sense Ambiguity in Statistical Machine Translation315
11.3.5 Other Emerging Applications317
11.4 Alternative Conceptions of Word Sense320
11.4.1 Richer Linguistic Representations320
11.4.2 Patterns of Usage321
11.4.3 Cross-Language Relationships323
11.5 Conclusions325
Acknowledgments325
References326
A Resources for WSD339
A.1 Sense Inventories339
A.1.1 Dictionaries339
A.1.2 Thesauri341
A.1.3 Lexical Knowledge Bases341
A.2 Corpora343
A.2.1 Raw Corpora343
A.2.2 Sense-Tagged Corpora345
A.2.3 Automatically Tagged Corpora347
A.3 Other Resources348
A.3.1 Software348
A.3.2 Utilities,Demos,and Data349
A.3.3 Language Data Providers350
A.3.4 Organizations and Mailing Lists350
Index of Terms353
Index of Authors and Algorithms361