图书介绍
等离子体物理学基础 第3版 英文版PDF|Epub|txt|kindle电子书版本网盘下载
- (巴西)比当古著 著
- 出版社: 北京;西安:世界图书出版公司
- ISBN:9787510005596
- 出版时间:2010
- 标注页数:679页
- 文件大小:90MB
- 文件页数:701页
- 主题词:等离子体物理学-英文
PDF下载
下载说明
等离子体物理学基础 第3版 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1.INTRODUCTION1
1.General Properties of Plasmas1
1.1 Definition of a Plasma1
1.2 Plasma as the Fourth State of Matter1
1.3 Plasma Production2
1.4 Particle Interactions and Collective Effects3
1.5 Some Basic Plasma Phenomena4
2.Criteria for the Definition of a Plasma6
2.1 Macroscopic Neutrality6
2.2 Debye Shielding7
2.3 The Plasma Frequency9
3.The Occurrence of Plasmas in Nature11
3.1 The Sun and its Atmosphere13
3.2 The Solar Wind13
3.3 The Magnetosphere and the Van Allen Radiation Belts14
3.4 The Ionosphere16
3.5 Plasmas Beyond the Solar System17
4.Applications of Plasma Physics17
4.1 Controlled Thermonuclear Fusion18
4.2 The Magnetohydrodynamic Generator22
4.3 Plasma Propulsion23
4.4 Other Plasma Devices23
5.Theoretical Description of Plasma Phenomena25
5.1 General Considerations on a Self-Consistent Formulation25
5.2 Theoretical Approaches27
Problems28
2.CHARGED PARTICLE MOTION IN CONSTANT AND UNIFORM ELECTROMAGNETIC FIELDS33
1.Introduction33
2.Energy Conservation34
3.Uniform Electrostatic Field36
4.Uniform Magnetostatic Field37
4.1 Formal Solution of the Equation of Motion37
4.2 Solution in Cartesian Coordinates40
4.3 Magnetic Moment44
4.4 Magnetization Current46
5.Uniform Electrostatic and Magnetostatic Fields49
5.1 Formal Solution of the Equation of Motion49
5.2 Solution in Cartesian Coordinates52
6.Drift Due to an External Force54
Problems56
3.CHARGED PARTICLE MOTION IN NONUNIFORM MAGNETOSTATIC FIELDS59
1.Introduction59
2.Spatial Variation of the Magnetic Field61
2.1 Divergence Terms62
2.2 Gradient and Curvature Terms64
2.3 Shear Terms65
3.Equation of Motion in the First-Order Approximation66
4.Average Force Over One Gyration Period68
4.1 Parallel Force70
4.2 Perpendicular Force72
4.3 Total Average Force73
5.Gradient Drift74
6.Parallel Acceleration of the Guiding Center74
6.1 Invariance of the Orbital Magnetic Moment and of the Magnetic Flux75
6.2 Magnetic Mirror Effect77
6.3 The Longitudinal Adiabatic Invariant81
7.Curvature Drift84
8.Combined Gradient-Curvature Drift87
Problems89
4.CHARGED PARTICLE MOTION IN TIME-VARYING ELECTROMAGNETIC FIELDS95
1.Introduction95
2.Slowly Time-Varying Electric Field95
2.1 Equation of Motion and Polarization Drift95
2.2 Plasma Dielectric Constant97
3.Electric Field with Arbitrary Time Variation100
3.1 Solution of the Equation of Motion100
3.2 Physical Interpretation102
3.3 Mobility Dyad105
3.4 Plasma Conductivity Dyad105
3.5 Cyclotron Resonance106
4.Time-Varying Magnetic Field and Space-Varying Electric Field108
4.1 Equation of Motion and Adiabatic Invariants108
4.2 Magnetic Heating of a Plasma112
5.Summary of Guiding Center Drifts and Current Densities115
5.1 Guiding Center Drifts115
5.2 Current Densities115
Problems116
5.ELEMENTS OF PLASMA KINETIC THEORY122
1.Introduction122
2.Pbase Space123
2.1 Single-Particle Phase Space123
2.2 Many-Particle Phase Space123
2.3 Volume Elements124
3.Distribution Function126
4.Number Density and Average Velocity128
5.The Boltzmann Equation129
5.1 Collisionless Boltzmann Equation129
5.2 Jacobian of the Transformation in Phase Space132
5.3 Effects of Particle Interactions133
6.Relaxation Model for the Collision Term135
7.The Vlasov Equation136
Problems138
6.AVERAGE VALUES AND MACROSCOPIC VARIABLES141
1.Average Value of a Physical Quantity141
2.Average Velocity and Peculiar Velocity142
3.Flux143
4.Particle Current Density146
5.Momentum Flow Dyad or Tensor147
6.Pressure Dyad or Tensor148
6.1 Concept of Pressure148
6.2 Force per Unit Area149
6.3 Force per Unit Volume151
6.4 Scalar Pressure and Absolute Temperature152
7.Heat Flow Vector154
8.Heat Flow Triad154
9.Total Energy Flux Triad155
10.Higher Moments of the Distribution Function157
Problems157
7.THE EQUILIBRIUM STATE161
1.The Equilibrium State Distribution Function161
1.1 The General Principle of Detailed Balance and Binary Collisions162
1.2 Summation Invariants164
1.3 Maxwell-Boltzmann Distribution Function165
1.4 Determination of the Constant Coefficients166
1.5 Local Maxwell-Boltzmann Distribution Function169
2.The Most Probable Distribution169
3.Mixture of Various Particle Species170
4.Properties of the Maxwell-Boltzmann Distribution Function171
4.1 Distribution of a Velocity Component171
4.2 Distribution of Speeds174
4.3 Mean Values Related to the Molecular Speeds176
4.4 Distribution of Thermal Kinetic Energy178
4.5 Random Particle Flux178
4.6 Kinetic Pressure and Heat Flux181
5.Equilibrium in the Presence of an External Force181
6.Degree of Ionization in Equilibrium and the Saha Equation184
Problems187
8.MACROSCOPIC TRANSPORT EQUATIONS193
1.Momens of the Boltzmann Equation193
2.General Transport Equation194
3.Conservation of Mass197
3.1 Derivation of the Continuity Equation197
3.2 Derivation by the Method of Fluid Dynamics198
3.3 The Collision Term200
4.Conservation of Momentum200
4.1 Derivation of the Equation of Motion200
4.2 The Collision Term203
5.Conservation of Energy204
5.1 Derivation of the Energy Transport Equation204
5.2 Physical Interpretation207
5.3 Simplifying Approximations207
6.The Cold Plasma Model210
7.The Warm Plasma Model211
Problems212
9.MACROSCOPIC EQUATIONS FOR A CONDUCTING FLUID219
1.Macroscopic Variables for a Plasma as a Conducting Fluid219
2.Continuity Equation222
3.Equation of Motion223
4.Energy Equation224
5.Electrodynamic Equations for a Conducting Fluid227
5.1 Maxwell Curl Equations228
5.2 Conservation of Electric Charge228
5.3 Generalized Ohm's Law229
6.Simplified Magnetohydrodynamic Equations234
Problems236
10.PLASMA CONDUCTIVITY AND DIFFUSION238
1.Introduction238
2.The Langevin Equation238
3.Linearization of the Langevin Equation240
4.DC Conductivity and Electron Mobility242
4.1 Isotropic Plasma242
4.2 Anisotropic Magnetoplasma243
5.AC Conductivity and Electron Mobility247
6.Conductivity with Ion Motion249
7.Plasma as a Dielectric Medium250
8.Free Electron Diffusion251
9.Electron Diffusion in a Magnetic Field254
10.Ambipolar Diffusion256
11.Diffusion in a Fully Ionized Plasma260
Problems262
11.SOME BASIC PLASMA PHENOMENA269
1.Electron Plasma Oscillations269
2.The Debye Shielding Problem273
3.Debye Shielding Using the Vlasov Equation278
4.Plasma Sheath279
4.1 Physical Mechanism280
4.2 Electric Potential on the Wall281
4.3 Inner Structure of the Plasma Sheath282
5.Plasma Probe288
Problems291
12.SIMPLE APPLICATIONS OF MAGNETOHYDRODYNAMICS299
1.Fundamental Equations of Magnetohydrodynamics299
1.1 Parker Modifled Momentum Equation300
1.2 The Double Adiabatic Equations of Chew,Goldberger,and Low(CGL)302
1.3 Special Cases of the Double Adiabatic Equations305
1.4 Energy Integral307
2.Magnetic Viscosity and Reynolds Number309
3.Diffusion of Magnetic Field Lines311
4.Freezing of Magnetic Field Lines to the Plasma312
5.Magnetic Pressure316
6.Isobaric Surfaces318
7.Plasma Confinement in a Magnetic Field319
Problems322
13.THE PINCH EFFECT325
1.Introduction325
2.The Equilibrium Pinch326
3.The Bennett Pinch332
4.Dynamic Model of the Pinch335
5.Instabilities in a Pinched Plasma Column341
6.The Sausage Instability342
7.The Kink Instability345
8.Convex Field Configurations346
Problems348
14.ELECTROMAGNETIC WAVES IN FREE SPACE351
1.The Wave Equation351
2.Solution in Plane Waves352
3.Harmonic Waves354
4.Polarization358
5.Energy Flow363
6.Wave Packets and Group Velocity366
Problems370
15.MAGNETOHYDRODYNAMIC WAVES375
1.Introduction375
1.1 Alfvén Waves376
1.2 Magnetosonic Waves377
2.MHD Equations for a Compressible Nonviscous Conducting Fluid379
2.1 Basic Equations379
2.2 Development of an Equation for the Fluid Velocity381
3.Propagation Perpendicular to the Magnetic Field382
4.Propagation Parallel to the Magnetic Field383
5.Propagation at Arbitrary Directions384
5.1 Pure Alfvén Wave386
5.2 Fast and Slow MHD Waves387
5.3 Phase Velocities387
5.4 Wave Normal Surfaces388
6.Effect of Displacement Current390
6.1 Basic Equations392
6.2 Equation for the Fluid Velocity392
6.3 Propagation Across the Magnetostatic Field393
6.4 Propagation Along the Magnetostatic Field393
7.Damping of MHD Waves394
7.1 Alfén Waves395
7.2 Sound Waves396
7.3 Magnetosonic Waves396
Problems397
16.WAVES IN COLD PLASMAS400
1.Introduction400
2.Basic Equations of Magnetoionic Theory401
3.Plane Wave Solutions and Linearization402
4.Wave Propagation in Isotropic Electron Plasmas403
4.1 Derivation of the Dispersion Relation403
4.2 Collisionless Plasma405
4.3 Time-Averaged Poynting Vector407
4.4 The Effect of Collisions410
5.Wave Propagation in Magnetized Cold Plasmas413
5.1 Derivation of the Dispersion Relation414
5.2 The Appleton-Hartree Equation418
6.Propagation Parallel to B0419
7.Propagation Perpendicular to B0423
8.Propagation at Arbitrary Directions430
8.1 Resonances and Reflection Points430
8.2 Wave Normal Surfaces432
8.3 The CMA Diagram434
9.Some Special Wave Phenomena in Cold Plasmas439
9.1 Atmospheric Whistlers439
9.2 Helicons442
9.3 Faraday Rotation444
Problems447
17.WAVES IN WARM PLASMAS453
1.Introduction453
2.Waves in a Fully Ionized Isotropic Warm Plasma453
2.1 Derivation of the Equations for the Electron and Ion Velocities453
2.2 Longitudinal Waves456
2.3 Transverse Wave458
3.Basic Equations for Waves in a Warm Magnetoplasma460
4.Waves in a Warm Electron Gas in a Magnetic Field462
4.1 Derivation of the Dispersion Relation462
4.2 Wave Propagation Along the Magnetic Field463
4.3 Wave Propagation Normal to the Magnetic Field466
4.4 Wave Propagation at Arbitrary Directions469
5.Waves in a Fully Ionized Warm Magnetoplasma470
5.1 Derivation of the Dispersion Relation471
5.2 Wave Propagation Along the Magnetic Field473
5.3 Wave Propagation Normal to the Magnetic Field477
5.4 Wave Propagation at Arbitrary Directions479
6.Summary479
Problems481
18.WAVES IN HOT ISOTROPIC PLASMAS483
1.Introduction483
2.Basic Equations483
3.General Results for a Plane Wave in a Hot Isotropic Plasma485
3.1 Perturbation Charge Density and Current Density485
3.2 Solution of the Linearized Vlasov Equation486
3.3 Expression for the Current Density488
3.4 Separation into the Various Modes489
4.Electrostatic Longitudinal Wave in a Hot Isotropic Plasma491
4.1 Development of the Dispersion Relation491
4.2 Limiting Case of a Cold Plasma492
4.3 High Phase Velocity Limit493
4.4 Dispersion Relation for Maxwellian Distribution Function494
4.5 Landau Damping500
5.Transverse Wave in a Hot Isotropic Plasma503
5.1 Development of the Dispersion Relation503
5.2 Cold Plasma Result504
5.3 Dispersion Relation for Maxwellian Distribution Function504
5.4 Landau Damping of the Transverse Wave505
6.The Two-Stream Instability506
7.Summary508
7.1 Longitudinal Mode508
7.2 Transverse Mode509
Problems510
19.WAVES IN HOT MAGNETIZED PLASMAS515
1.Introduction515
2.Wave Propagation Along the Magnetostatic Field in a Hot Plasma516
2.1 Linearized Vlasov Equation516
2.2 Solution of the Linearized Vlasov Equation517
2.3 Perturbation Current Density522
2.4 Separation into the Various Modes524
2.5 Longitudinal Plasma Wave525
2.6 Transverse Electromagnetic Waves526
2.7 Temporal Damping of the Transverse Electromagnetic Waves529
2.8 Cyclotron Damping of the RCP Transverse Wave531
2.9 Instabilities in the RCP Transverse Wave532
3.Wave Propagation Across the Magnetostatic Field in a Hot Plasma534
3.1 Solution of the Linearized Vlasov Equation536
3.2 Current Density and the Conductivity Tensor538
3.3 Evaluation ofthe Integrals540
3.4 Separation into the Various Modes544
3.5 Dispersion Relations545
3.6 The Quasistatic Mode546
3.7 The TEM Mode550
4.Summary552
4.1 Propagation Along B0 in Hot Magnetoplasmas552
4.2 Propagation Across B0 in Hot Magnetoplasmas553
Problems554
20.PARTICLE INTERACTIONS IN PLASMAS560
1.Introduction560
2.Binary Collisions561
3.Dynamics of Binary Collisions566
4.Evaluation of the Scattering Angle569
4.1 Two Perfectly Elastic Hard Spheres570
4.2 Coulomb Interaction Potential570
5.Cross Sections572
5.1 Differential Scattering Cross Section574
5.2 Total Scattering Cross Section576
5.3 Momentum Transfer Cross Section577
6.Cross Sections for the Hard Sphere Model578
6.1 Differential Scattering Cross Section578
6.2 Total Scattering Cross Section579
6.3 Momentum Transfer Cross Section579
7.Cross Sections for the Coulomb Potential580
7.1 Differential Scattering Cross Section580
7.2 Total Scattering Cross Section581
7.3 Momentum Transfer Cross Section581
8.Screening of the Coulomb Potential582
Problems586
21.THE BOLTZMANN AND THE FOKKER-PLANCK EQUATIONS589
1.Introduction589
2.The Boltzmann Equation590
2.1 Derivation of the Boltzmann Collision Integral590
2.2 Jacobian of the Transformation594
2.3 Assumptions in the Derivation of the Boltzmann Collision Integral596
2.4 Rate of Change of a Physical Quantity as a Result of Collisions597
3.The Boltzmann's H Function598
3.1 Boltzmann's H Theorem599
3.2 Analysis of Boltzmann's H Theorem601
3.3 Maximum Entropy or Minimum H Approach for Deriving the Equilibrium Distribution Function604
3.4 Mixture of Various Particle Species606
4.Boltzmann Collision Term for a Weakly Ionized Plasma607
4.1 Spherical Harmonic Expansion of the Distribution Function607
4.2 Approximate Expression for the Boltzmann Collision Term609
4.3 Rate of Change of Momentum Due to Collisions611
5.The Fokker-Planck Equation612
5.1 Derivation of the Fokker-Planck Collision Term612
5.2 The Fokker-Planck Coefficients for Coulomb Interactions616
5.3 Application to Electron-Ion Collisions621
Problems621
22.TRANSPPRT PROCESSES IN PLASMAS628
1.Introduction628
2.Electric Conductivity in a Nonmagnetized Plasma629
2.1 Solution of the Boltzmann Equation629
2.2 Electric Current Density and Conductivity630
2.3 Conductivity for Maxwellian Distribution Function633
3.Electric Conductivity in a Magnetized Plasma634
3.1 Solution of Boltzmann Equation634
3.2 Electric Current Density and Conductivity637
4.Free Diffusion640
4.1 Perturbation Distribution Function640
4.2 Particle Flux641
4.3 Free Diffusion Coefficient641
5.Diffusion in a Magnetic Field643
5.1 Solution of Boltzmann Equation643
5.2 Particle Flux and Diffusion Coefficients645
6.Heat Flow647
6.1 General Expression for the Heat Flow Vector647
6.2 Thermal Conductivity for a Constant Kinetic Pressure648
6.3 Thermal Conductivity for the Adiabatic Case649
Problems650
APPENDIX A Useful Vector Relations655
APPENDIX B Useful Relations in Cartesian and in Curvilinear Coordinates658
APPENDIX C Physical Constants(MKSA)662
APPENDIX D Conversion Factors for Physical Units663
APPENDIX E Some Important Plasma Parameters664
APPENDIX F Approximate Magnitudes in Some Typical Plasmas667
INDEX669