图书介绍

高等数学 下PDF|Epub|txt|kindle电子书版本网盘下载

高等数学 下
  • 敬晓龙,谢小凤,贾堰林主编 著
  • 出版社: 重庆:重庆大学出版社
  • ISBN:9787562496151
  • 出版时间:2016
  • 标注页数:271页
  • 文件大小:42MB
  • 文件页数:281页
  • 主题词:高等数学-高等学校-教材

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

高等数学 下PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第6章 空间解析几何与向量代数1

§6.1向量及其线性运算1

6.1.1向量的概念1

6.1.2向量的线性运算2

6.1.3空间直角坐标系及向量的坐标4

6.1.4向量的模、方向余弦、投影7

习题6-110

§6.2数量积 向量积 混合积11

6.2.1两向量的数量积11

6.2.2两向量的向量积13

6.2.3两向量的混合积15

习题6-216

§6.3平面及其方程17

6.3.1平面的点法式方程17

6.3.2平面的一般方程19

6.3.3两平面的夹角20

习题6-323

§6.4空间直线及其方程24

6.4.1空间直线的一般方程24

6.4.2空间直线的对称式方程和参数方程24

6.4.3两直线的夹角26

6.4.4直线与平面的夹角27

习题6-430

§6.5曲面及其方程32

6.5.1曲面方程的概念32

6.5.2旋转曲面33

6.5.3柱面35

6.5.4二次曲面35

习题6-536

§6.6空间曲线及其方程37

6.6.1空间曲线的一般方程37

6.6.2空间曲线的参数方程38

6.6.3空间曲线在坐标面上的投影39

习题6-641

第7章 多元函数微分法及其应用43

§7.1多元函数的基本概念43

7.1.1平面点集43

7.1.2多元函数的概念47

7.1.3多元函数的极限48

7.1.4多元函数的连续性49

习题7-152

§7.2偏导数53

7.2.1偏导数的定义及其计算法53

7.2.2高阶偏导数56

习题7-259

§7.3全微分60

7.3.1全微分的定义60

7.3.2全微分在近似计算中的应用63

习题7-364

§7.4多元复合函数的求导法则65

习题7-469

§7.5隐函数的微分法70

7.5.1一个方程的情形70

7.5.2方程组的情形72

习题7-576

§7.6多元函数微分学在几何上的应用77

7.6.1空间曲线的切线和法平面77

7.6.2曲面的切平面与法线79

习题7-681

§7.7方向导数与梯度82

7.7.1方向导数82

7.7.2梯度85

习题7-788

§7.8多元函数的极值及其求法89

7.8.1多元函数的极值89

7.8.2多元函数的最值91

7.8.3条件极值 最小二乘法93

习题7-895

第8章 重积分97

§8.1二重积分的概念与性质97

8.1.1二重积分的概念97

8.1.2二重积分的性质101

习题8-1103

§8.2二重积分的计算105

8.2.1二重积分在直角坐标系中的计算105

8.2.2二重积分在极坐标系中的计算113

8.2.3二重积分的换元法118

习题8-2122

§8.3三重积分124

8.3.1三重积分的概念124

8.3.2三重积分的计算126

习题8-3133

§8.4重积分的应用135

8.4.1曲面的面积135

8.4.2质心139

习题8-4142

第9章 曲线积分与曲面积分144

§9.1对弧长的曲线积分144

9.1.1对弧长的曲线积分的概念与性质144

9.1.2对弧长的曲线积分的计算法146

习题9-1149

§9.2对坐标的曲线积分151

9.2.1对坐标的曲线积分的概念与性质151

9.2.2对坐标的曲线积分的计算154

9.2.3两类曲线积分之间的联系157

习题9-2159

§9.3格林公式及其应用162

9.3.1格林公式162

9.3.2平面上曲线积分与路径无关的条件166

9.3.3二元函数的全微分求积167

习题9-3170

§9.4对面积的曲面积分174

9.4.1对面积的曲面积分的概念与性质174

9.4.2对面积的曲面积分的计算175

习题9-4178

§9.5对坐标的曲面积分181

9.5.1对坐标的曲面积分的概念与性质181

9.5.2对坐标的曲面积分的计算法186

9.5.3两类曲面积分之间的联系189

习题9-5191

§9.6高斯公式 通量与散度194

9.6.1高斯公式194

9.6.2通量与散度196

习题9-6198

§9.7斯托克斯公式 环流量与旋度200

9.7.1斯托克斯公式200

9.7.2环流量与旋度202

习题9-7203

第10章 无穷级数206

§10.1常数项级数206

10.1.1常数项级数的概念206

10.1.2收敛级数的基本性质207

习题10-1210

§10.2常数项级数的审敛法211

10.2.1正项级数及其审敛法211

10.2.2交错级数及其审敛法215

10.2.3绝对收敛与条件收敛216

习题10-2217

§10.3幂级数218

10.3.1幂级数及其敛散性218

10.3.2幂级数收敛半径与收敛区间219

10.3.3幂级数的运算221

习题10-3224

§10.4函数展开成幂级数225

10.4.1泰勒公式225

10.4.2直接展开法226

10.4.3间接展开法227

习题10-4230

§10.5傅里叶级数231

10.5.1三角级数231

10.5.2函数展开成傅里叶级数233

10.5.3正弦级数或余弦级数236

10.5.4一般周期的傅里叶级数236

习题10-5240

部分习题参考答案241

热门推荐