图书介绍
垃圾渗滤液中溶解有机质与内分泌干扰物相互作用研究PDF|Epub|txt|kindle电子书版本网盘下载
![垃圾渗滤液中溶解有机质与内分泌干扰物相互作用研究](https://www.shukui.net/cover/71/33248336.jpg)
- 张彩香,王焰新编著 著
- 出版社: 北京:中国环境科学出版社
- ISBN:9787511102065
- 出版时间:2010
- 标注页数:223页
- 文件大小:18MB
- 文件页数:246页
- 主题词:垃圾处理-卫生填埋-研究
PDF下载
下载说明
垃圾渗滤液中溶解有机质与内分泌干扰物相互作用研究PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
第1章 绪论153
1.1 研究意义153
1.1.1 研究背景153
1.1.2 目标154
1.1.3 研究路线155
1.2 垃圾渗滤液156
1.2.1 现代市政生活垃圾填埋场157
1.2.2 垃圾填埋场渗滤液的特性158
1.3 垃圾渗滤液中内分泌干扰物160
1.3.1 天然和合成雌激素161
1.3.2 邻苯二甲酸盐162
1.3.3 烷基酚164
1.3.4 植物雌激素164
1.4 水环境中溶解有机质的表征165
1.5 溶解有机质和有机污染物的相互作用165
第2章 垃圾渗滤液中溶解有机质的表征167
2.1 引言167
2.2 材料与实验方式167
2.2.1 样品采集167
2.2.2 超滤分离DOM168
2.2.3 DOM的分组168
2.2.4 荧光光谱和紫外测量168
2.2.5 分子量分组169
2.2.6 元素分析169
2.2.7 核磁共振分析169
2.2.8 傅立叶变换红外分析170
2.3 结果与讨论170
2.3.1 渗滤液的化学特性170
2.3.2 DOM分子量分布的超滤测定结果171
2.3.3 DOM的树脂分组结果173
2.3.4 元素分析173
2.3.5 渗滤液组分的HPLC174
2.3.6 紫外吸收光谱176
2.3.7 荧光光谱176
2.3.8 质子核磁共振177
2.3.9 红外光谱178
2.4 结论178
第3章 垃圾渗滤液中有机污染物180
3.1 运用GC/MS表征垃圾渗滤液中有机污染物180
3.1.1 引言180
3.1.2 材料和方法180
3.1.3 结果与讨论181
3.1.4 结论183
3.2 运用SDE-GC×GC/ToFMS表征垃圾渗滤液中壬基酚同分异构体183
3.2.1 引言183
3.2.2 材料和方法184
3.2.3 结果与讨论186
3.2.4 结论189
3.3 垃圾渗滤液中内分泌干扰物189
3.3.1 引言189
3.3.2 材料和方法190
3.3.3 结果与讨论193
3.3.4 结论197
第4章 垃圾渗滤液中大分子有机物在线裂解分析198
4.1 引言198
4.2 材料和方法199
4.2.1 酸解199
4.2.2 碱解200
4.2.3 氧化铜氧化200
4.2.4 在线裂解-色谱-质谱(Py/GC/MS)和现场甲基化裂解-色谱-质谱(Py/GC/MS/TMAH)200
4.2.5 核磁共振200
4.2.6 GC/MS和元素分析200
4.3 结果与讨论201
4.3.1 在线裂解-色谱-质谱201
4.3.2 现场甲基化裂解-色谱-质谱201
4.4 结论204
第5章 垃圾渗滤液中溶解有机质与内分泌干扰物的相互作用机理研究206
5.1 垃圾渗滤液中DOM与EEDs的吸附机理206
5.1.1 引言206
5.1.2 材料和方法206
5.1.3 结果与讨论207
5.1.4 总结210
5.2 垃圾渗滤液DOM对EEDs光催化降解的影响210
5.2.1 引言210
5.2.2 材料和方法212
5.2.3 结果与讨论213
5.2.4 结论221
第6章 结论223
List of Tables6
Table 1-1 Composition of municipal garbage in some countries6
Table 1-2 Composition of municipal garbage in some cities of China6
Table 1-3 The percentage of different approaches of municipal garbage treatment in some developed countries7
Table 1-4 The percentage of different approaches of treatment methods of municipal garbage in some cities of China7
Table 1-5 The concentration range of pollutants in landfill leachate9
Table 1-6 Changes of leachate properties with landfill age9
Table 1-7 The leachate properties from the landfills in different cities in China9
Table 1-8 Changes between leachate properties and treatment methods11
Table 1-9 Concentrations of natural and synthetic hormones in wastewater treatment plants(WWTPs)13
Table l-10 Reported concentrations of natural and synthetic estrogens in surface waters14
Table 1-1l Physical properties of eighteen phthalate esters14
Table l-12 Selected parameters controlling the environmental distribution of phthalate esters15
Table 1-13 Reported phthalate concentrations in landfill leachate16
Table 2-1 Characteristics of landfill leachate samples from the three landfills26
Table 2-2 The distribution of total dissolved carbon and nitrogen in each fraction separated by UF27
Table 2-3 The main parameters in each fraction separated by UF27
Table 2-4 The distribution of total dissolved carbon and nitrogen in each fraction isolated by XAD-8/-4 resin28
Table 2-5 Elemental compositions of isolated fractions from leachate DOM30
Table 3-1 Organic matters in DOM from landfill leachate48
Table 3-2 GC×GC retention times and mass spectral features of most abundant NP isomers,structure assignment of isomers based on comparison with data published recently and their synthetic standards65
Table 3-3 QA/QC of SDE method proved by GC/MS67
Table 3-4 Results of determination of NP isomers in landfill leachate samples Using GC×GC/ToFMS68
Table 3-5 Objective substances of EEDs71
Table 3-6 Ions for the quantitative analysis of silylation derivatives of target EEDs and internal standards73
Table 3-7 The linear range for the target EEDs by GC/MS74
Table 3-8 The results of BPA,E1,E2 and PAEs measurement79
Table 3-9 Sterols in R and J-landfills84
Table 4-1 Typical pyrolysis products of DOM90
Table 4-2 Typical pyrolysis products of DOM93
Table 4-3 Typical pyrolysis products of non-extractable residues after acid hydrolysis of R1-3 with in situ methylation101
Table 5-1 Sorption coefficient(1gKOC Values)onto DOM and Ocanol-Water Partition Coefficients(1gKowValues)of Selected EEDs108
Table 5-2 ESR data of R1-3 and the bound R1-3 with BPA,E2 and E1110
Table 5-3 Characteristics of BPA,E2 and E1117
Table 5-4 The influence of DOM on phototransformation parameters of BPA and E2 under sunlit irradiation120
Table 5-5 Composition(as% of total carbon)of DOM isolates used in this study as determined by 1H NMR spectroscopy and extinction coefficients(ε)measured at 280 nm122
Table 5-6 Pseudo-First-Order Rate Coefficients for Direct and Indirect Phototransformation of EEDs with catalyst TiO2 or H2O2 under UV irradiation123
Table 5-7 Mass fragment ion(m/z)and relative abundance(%)of probable intermediates and BPA obtained from GC/MS spectra128
List of Figures5
Fig.1-1 Scheme of this research5
Fig.2-1 Flow chart of organic matter size fractionation using filtration and ultrafiltration22
Fig.2-2 Scheme of the tandem XAD-8/XAD-4 isolation procedure of DOM portion from the landfill leachate23
Fig.2-3 Chromatograms of three DOM samples on ODS-C18 reserved-phase support31
Fig.2-4 Comparision of chromatograms between R1-3 and R1-5 on ODS-C18 reserved-phase support31
Fig.2-5 Chromatograms of isolated fraction by XAD resins on ODS-C 1 8 reserved-phase support32
Fig.2-6 RID and UV254 nm chromatograms of unfractionated DOM from three landfill leachate samples and fractionated R1-333
Fig.2-7 Distribution of UV absorbance area(%)and RID%among the four distinct peaks of the HPSEC chromatograms for each of the DOM fractions34
Fig.2-8 RID and UV254 nm chromatograms of fractionated R1-3 by XAD-8/-4 column34
Fig.2-9 Distribution of UV absorbance area(%)and DOC%among the four distinct peaks of the HPSEC chromatograms for each of the DOM fractions35
Fig.2-10 UV spectra of isolated fractions from leachate DOM36
Fig.2-11 Typical fluorescence EEM observed in landfill leachate from R-landfill sampled inAugust,200637
Fig.2-12 SF spectra for original DOM and its six fractions at offsets of 20 nm38
Fig.2-13 The relative abundance(%)ofeach peak(285,350,385,and 430 nm)in the synchronous fluorescence spectra and the fluorescence index,Peak Ⅰ/Peak Ⅱ,in leachate samples isolated by UF39
Fig.2-14 The relative abundance(%)comparison between isolated fraction ofR1-3(05)and of R1-5 by XAD in the synchronous fluorescence spectra and the fluorescence index,Peak Ⅰ/Peak Ⅱ,Peak Ⅲ/Peak Ⅱ39
Fig.2-15 The relative abundance(%)comparison between isolated fraction of R1-3(06)and of J1-3 by XAD in the synchronous fluorescence spectra and the fluorescence index,Peak Ⅰ/Peak Ⅱ,Peak Ⅲ/Peak Ⅱ40
Fig.2-16 1H NMR spectra of fractions of DOM samples collected from different sources41
Fig.2-17 Infrared spectra of DOM fractions from R-landfill43
Fig.3-1 Total ion and selected ion chromatograms(m/z=85)of extracted R1-3 without pH adjustment using n-hexane47
Fig.3-2 Total ion and selected ion chromatograms(m/z=60)of extracted R1-3 with pH>12 and pH<2 using DCM48
Fig.3-3 Total ion chromatograms and selected ion chromatograms(m/z=74)of adsorbed organic compounds eluated by methanol53
Fig.3-4 Total ion chromatograms(TMS)and zoom out between 55 and 65 min extracted using methanol53
Fig.3-5 Total ion chromatograms of three fractions extracted from three landfills54
Fig.3-6 Relative proportions of nine compound classes of organic matter of different treatment and membrane filterate samples obtained by GC/MS55
Fig.3-7 Molecular weight distribution during different treatment processes detected by HPLC with RID and UV detectors56
Fig.3-8 Contour plot and its 1D GC of TNP using GC×GC/ToFMS61
Fig.3-9 Zoomed section of contour plot of 4-NPs compared to synthetic mixture of NP including NP194(36),NP93(a,b),NP112,NP111(a,b),NP152,NP65 and NP962
Fig.3-10 Peak table for Fig.3-862
Fig.3-11 Chromatograph of TNP compared to synthetic mixture of NP using GC/MS63
Fig.3-12 Mass spectra and chromatogram of synthetic NP36 and NP93 standard using GC/MS and GC×GC/ToFMS64
Fig.3-13 Mass spectra of unidentified para-NP isomers66
Fig.3-14 Total ion chromatograph(TIC)of leachate from new cell of East Oaks landfill analyzed by SDE coupled with GC×GC/ToFMS67
Fig.3-15 Dumping blocks,leachate treatment facilities and sampling points72
Fig.3-16 Full scan chromatogram of target EEDs73
Fig.3-17 The recovery of EEDs from different elution solvents75
Fig.3-18 The effects of NaCl concentration and pH on the recoveries of EEDs75
Fig.3-19 The effect of aquatic matrices on the recovery of EEDs76
Fig.3-20 The effect of extraction methods on the recovery of EEDs77
Fig.3-21 The seasonal variation of EEDs in raw leachate78
Fig.3-22 The relationship between the concentration of BPA and DEHP and the DOC at the sampling points in the leachate conventional treatment process80
Fig.3-23 The concentration of BPA and DEHP at the sampling points in the leachate ultrafiltrate treatment processs81
Fig.3-24 Chromatograms of the sterols in landfill leachate81
Fig.4-1 Analysis scheme87
Fig.4-2 Reconstructed ion current of pyrolysis products at 610℃ of R1-6 from R-landfill91
Fig.4-3 Pyrolysis/methylation(TMAH)-GC/MS chromatograms of R1-6 at 610℃,R1-6 at 700℃,and R1-5 at 610℃96
Fig.4-4 Pyrolysis/methylation-GC/MS chromatograms of R1-6,H1-6 and J1-6 at 610℃97
Fig.4-5 Percentage of the major groups of pyrolytic products of HMW from three landfills97
Fig.4-6 GC/MS of(a)the ether extractable compounds derivated by TMS from acid hydrolysis of R1-3,and(b)DCM extractable compounds derivated by TMS after ether extraction of acid hydrolysis of R1-399
Fig.4-7 Total ion chromatogram(TIC)and specific ion chromatogram(SIC,m/z=74) of the pyrolysates of non extractable residues after acid hydrolysis of R1-3 with in situ methylation100
Fig.4-8 Total ion chromatogram(TIC)of the pyrolysates of non extractable residues after alkaline oxidation of R1-3 with in situ methylation103
Fig.5-1 Adsorption isotherms for the bound with EEDs108
Fig.5-2 1H NMR spectra of R1-3 and bound R1-3 with BPA,E2 and E1109
Fig.5-3 Narrow range ESR spectra of untreated R1-3 and bound R1-3 with BPA,E2 and E1111
Fig.5-4 FTIR of R1-3 and bound R1-3 with BPA,E2 and E1111
Fig.5-5 Percent removal of PAEs by various concentrations of DOM(R1-3)112
Fig.5-6 Expected removal percentage of a pollutant with lg Koc of 1-7 using 50,100,and 150 mg/L DOM113
Fig.5-7 Schematic illustration of the photoreactor117
Fig.5-8 Photochemical transformation for(a)BPA,and(b)E2 in the presence and the absence of DOM isolated from three landfill leachates under sunlit irradiation119
Fig.5-9 UV-vis absorbance spectra for BPA,E2 and E1119
Fig.5-10 ESR spectra of R1-3 before and after irradiation121
Fig.5-11 The scheme of proposed mechanism of photosensitized degradation of BPA involved dissolved oxygen in HS solution122
Fig.5-12 Photodecomposition behavior of BPA,E2 and E1 in DOM by TiO2 powder under UV irradiation124
Fig.5-13 FTIR of BPA(a)after photodegradation,and(b)BPA standard125
Fig.5-14 UV absorption spectra of BPA before and after photodegradation125
Fig.5-15 Evolution of HPLC different chromatograms between initial and photocatalytic treatment of a BPA with R1-3 solution126
Fig.5-16 GC/MS chromatograms of sample solution after irradiation127
Fig.5-17 Proposed degradation mechanism of BPA under UV irradiation with catalvzer128
Fig.5-18 FTIR diagrams of E2 and E1130
Fig.5-19 Evolution of HPLC chromatograms of(a)different chromatograms of E1 with R1-3 solution between initial and photocatalytic treatment;(b)those of E2 with R1-3 during photocatalytic treatment130
Fig.5-20 GC/MS chromatograms of E2+E1 solution after irradiation131