图书介绍
力学PDF|Epub|txt|kindle电子书版本网盘下载
![力学](https://www.shukui.net/cover/29/33464011.jpg)
- (美)Landau,L.D.,(美)Lifshitz,E.M.著 著
- 出版社: 北京;西安:世界图书出版公司
- ISBN:7506242559
- 出版时间:1999
- 标注页数:170页
- 文件大小:9MB
- 文件页数:196页
- 主题词:
PDF下载
下载说明
力学PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Ⅰ.THE EQUATIONS OF MOTION1
1.Generalised co-ordinates1
2.The principle of least action2
3.Galileo's relativity principle4
4.The Lagrangian for a free particle6
5.The Lagrangian for a system of particles8
Ⅱ.CONSERVATION LAWS13
6.Energy13
7.Momentum15
8.Centre of mass16
9.Angular momentum18
0.Mechanical similarity22
Ⅲ.INTEGRATION OF THE EQUATIONS OF MOTION22
11.Motion in one dimension25
12.Determination of the potential energy from the period of oscillation27
13.The reduced mass29
14.Motion in a central field30
15.Kepler's problem35
Ⅳ.COLLISIONS BETWEEN PARTICLES41
16.Disintegration of particles41
17.Elastic collisions44
18.Scattering48
19.Rutherford's formula53
20.Small-angle scattering55
Ⅴ.SMALL OSCILLATIONS58
21.Free oscillations in one dimension58
22.Foreed oscillations61
23.Oscillations of systems with more than one degree offreedom65
24.Vibrations of molecules70
25.Damped oscillations74
26.Forced oscillations under friction77
27.Parametric resonance80
28.Anharmonic oscillations84
29.Resonance in non-linear oscillations87
30.Motionin arapidly oscillatingfield93
Ⅵ.MOTION OF A RIGID BODY96
31.Angular velocity96
32.The inertia tensor98
33.Angular momentum of a rigid body105
34.The equations of motion of a rigid body107
35.Eulerian angles110
36.Euler's equations114
37.The asymmctrical top116
38.Rigidbodies in contact122
39.Motion in a non-inertial frame of reference126
Ⅶ.THE CANONICAL EQUATIONS131
40.Hamilton's equations131
41.The Routhian133
42.Poisson brackets135
43.The action as a function ofthe co-ordinates138
44.Maupertuis' principle140
45.Canonical transformations143
46.Liouville's theorem146
47.The Hamilton-Jacobi equation147
48.Separation of thevariables149
49.Adiabatic invariants154
50.Canonical variables157
51.Accuracy of conservation of the adiabatic invariant159
52.Conditionally periodic motion162
Index167