图书介绍
Fundamentals of heat and mass transfer fifth editionPDF|Epub|txt|kindle电子书版本网盘下载
![Fundamentals of heat and mass transfer fifth edition](https://www.shukui.net/cover/8/33905509.jpg)
- FrankP.Incroperaanddavidp.dewitt 著
- 出版社: JohnWileyandSons
- ISBN:0471386502
- 出版时间:2002
- 标注页数:981页
- 文件大小:241MB
- 文件页数:1001页
- 主题词:
PDF下载
下载说明
Fundamentals of heat and mass transfer fifth editionPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
CHAPTER 1 Introduction2
1.1 What and How?2
1.2 Physical Origins and Rate Equations3
1.2.1 Conduction3
1.2.2 Convection6
1.2.3 Radiation9
1.2.4 Relationship to Thermodynamics12
1.3 The Conservation of Energy Requirement13
1.3.1 Conservation of Energy for a Control Volume13
1.3.2 The Surface Energy Balance21
1.3.3 Application of the Conservation Laws:Methodology24
1.4 Analysis of Heat Transfer Problems:Methodology24
1.5 Relevance of Heat Transfer27
1.6 Units and Dimensions28
1.7 Summary31
Problems34
CHAPTER 2 Introduction to Conduction51
2.1 The Conduction Rate Equation52
2.2 The Thermal Properties of Matter54
2.2.1 Thermal Conductivity54
2.2.2 Other Relevant Properties58
2.3 The Heat Diffusion Equation61
2.4 Boundary and Initial Conditions68
2.5 Summary72
References73
Problems73
CHAPTER 3 One-Dimensional,Steady-State Conduction87
3.1 The Plane Wall88
3.1.1 Temperature Distribution88
3.1.2 Thermal Resistance90
3.1.3 The Composite Wall91
3.1.4 Contact Resistance93
3.2 An Alternative Conduction Analysis101
3.3 Radial Systems104
3.3.1 The Cylinder105
3.3.2 The Sphere110
3.4 Summary of One-Dimensional Conduction Results114
3.5 Conduction with Thermal Energy Generation114
3.5.1 The Plane Wall115
3.5.2 Radial Systems121
3.5.3 Application of Resistance Concepts126
3.6 Heat Transfer from Extended Surfaces126
3.6.1 A General Conduction Analysis128
3.6.2 Fins of Uniform Cross-Sectional Area130
3.6.3 Fin Performance136
3.6.4 Fins of Nonuniform Cross-Sectional Area139
3.6.5 Overall Surface Efficiency140
3.7 Summary149
References152
Problems152
CHAPTER 4 Two-Dimensional,Steady-State Conduction183
4.1 Alternative Approaches184
4.2 The Method of Separation of Variables185
4.3 The Graphical Method189
4.3.1 Methodology of Constructing a Flux Plot190
4.3.2 Determination of the Heat Transfer Rate191
4.3.3 The Conduction Shape Factor192
4.4 Finite-Difference Equations196
4.4.1 The Nodal Network196
4.4.2 Finite-Difference Form of the Heat Equation197
4.4.3 The Energy Balance Method198
4.5 Finite-Difference Solutions205
4.5.1 The Matrix Inversion Method206
4.5.2 Gauss-Seidel Iteration207
4.5.3 Some Precautions213
4.6 Summary218
References219
Problems219
CHAPTER 5 Transient Conduction239
5.1 The Lumped Capacitance Method240
5.2 Validity of the Lumped Capacitance Method243
5.3 General Lumped Capacitance Analysis247
5.4 Spatial Effects254
5.5 The Plane Wall with Convection256
5.5.1 Exact Solution256
5.5.2 Approximate Solution257
5.5.3 Total Energy Transfer258
5.5.4 Additional Considerations259
5.6 Radial Systems with Convection260
5.6.1 Exact Solutions260
5.6.2 Approximate Solutions261
5.6.3 Total Energy Transfer261
5.6.4 Additional Considerations262
5.7 The Semi-Infinite Solid268
5.8 Multidimensional Effects274
5.9 Finite-Difference Methods280
5.9.1 Discretization of the Heat Equation:The Explicit Method280
5.9.2 Discretization of the Heat Equation:The Implicit Method288
5.10 Summary296
References297
Problems297
CHAPTER 6 Introduction to Convection325
6.1 The Convection Transfer Problem326
6.2 The Convection Boundary Layers331
6.2.1 The Velocity Boundary Layer331
6.2.2 The Thermal Boundary Layer332
6.2.3 The Concentration Boundary Layer333
6.2.4 Significance of the Boundary Layers335
6.3 Laminar and Turbulent Flow336
6.4 Boundary Layer Equations338
6.4.1 The Convection Transfer Equations339
6.4.2 The Boundary Layer Approximations344
6.5 Boundary Layer Similarity:The Normalized Boundary Layer Equations346
6.5.1 Boundary Layer Similarity Parameters346
6.5.2 Functional Form of the Solutions348
6.6 Physical Significance of the Dimensionless Parameters353
6.7 Boundary Layer Analogies356
6.7.1 The Heat and Mass Transfer Analogy356
6.7.2 Evaporative Cooling360
6.7.3 The Reynolds Analogy363
6.8 The Effects of Turbulence364
6.9 The Convection Coefficients367
6.10 Summary368
References369
Problems369
CHAPTER 7 External Flow385
7.1 The Empirical Method387
7.2 The Flat Plate in Parallel Flow389
7.2.1 Laminar Flow:A Similarity Solution389
7.2.2 Turbulent Flow395
7.2.3 Mixed Boundary Layer Conditions396
7.2.4 Special Cases397
7.3 Methodology for a Convection Calculation399
7.4 The Cylinder in Cross Flow401
7.4.1 Flow Considerations407
7.4.2 Convection Heat and Mass Transfer409
7.5 The Sphere415
7.6 Flow Across Banks of Tubes418
7.7 Impinging Jets428
7.7.1 Hydrodynamic and Geometric Considerations428
7.7.2 Convection Heat and Mass Transfer430
7.8 Packed Beds434
7.9 Summary435
References437
Problems438
CHAPTER 8 Internal Flow465
8.1 Hydrodynamic Considerations466
8.1.1 Flow Conditions466
8.1.2 The Mean Velocity467
8.1.3 Velocity Profile in the Fully Developed Region468
8.1.4 Pressure Gradient and Friction Factor in Fully Developed Flow470
8.2 Thermal Considerations471
8.2.1 The Mean Temperature472
8.2.2 Newton’s Law of Cooling473
8.2.3 Fully Developed Conditions473
8.3 The Energy Balance477
8.3.1 General Considerations477
8.3.2 Constant Surface Heat Flux478
8.3.3 Constant Surface Temperature481
8.4 Laminar Flow in Circular Tubes:Thermal Analysis and Convection Correlations485
8.4.1 The Fully Developed Region485
8.4.2 The Entry Region489
8.5 Convection Correlations:Turbulent Flow in Circular Tubes491
8.6 Convection Correlations:Noncircular Tubes495
8.7 The Concentric Tube Annulus500
8.8 Heat Transfer Enhancement502
8.9 Convection Mass Transfer503
8.10 Summary506
References509
Problems509
CHAPTER 9 Free Convection533
9.1 Physical Considerations534
9.2 The Governing Equations537
9.3 Similarity Considerations539
9.4 Laminar Free Convection on a Vertical Surface540
9.5 The Effects of Turbulence542
9.6 Empirical Correlations:External Free Convection Flows545
9.6.1 The Vertical Plate545
9.6.2 Inclined and Horizontal Plates548
9.6.3 The Long Horizontal Cylinder554
9.6.4 Spheres557
9.7 Free Convection within Parallel Plate Channels558
9.7.1 Vertical Channels559
9.7.2 Inclined Channels561
9.8 Empirical Correlations:Enclosures561
9.8.1 Rectangular Cavities561
9.8.2 Concentric Cylinders564
9.8.3 Concentric Spheres565
9.9 Combined Free and Forced Convection567
9.10 Convection Mass Transfer568
9.11 Summary569
References570
Problems572
CHAPTER 10 Boiling and Condensation593
10.1 Dimensionless Parameters in Boiling and Condensation594
10.2 Boiling Modes595
10.3 Pool Boiling596
10.3.1 The Boiling Curve596
10.3.2 Modes of Pool Boiling598
10.4 Pool Boiling Correlations601
10.4.1 Nucleate Pool Boiling602
10.4.2 Critical Heat Flux for Nucleate Pool Boiling603
10.4.3 Minimum Heat Flux603
10.4.4 Film Pool Boiling604
10.4.5 Parametric Effects on Pool Boiling605
10.5 Forced-Convection Boiling610
10.5.1 External Forced-Convection Boiling611
10.5.2 Two-Phase Flow611
10.6 Condensation:Physical Mechanisms613
10.7 Laminar Film Condensation on a Vertical Plate615
10.8 Turbulent Film Condensation619
10.9 Film Condensation on Radial Systems623
10.10 Film Condensation in Horizontal Tubes626
10.11 Dropwise Condensation627
10.12 Summary627
References628
Problems630
CHAPTER 11 Heat Exchangers641
11.1 Heat Exchanger Types642
11.2 The Overall Heat Transfer Coefficient645
11.3 Heat Exchanger Analysis:Use of the Log Mean Temperature Difference647
11.3.1 The Parallel-Flow Heat Exchanger648
11.3.2 The Counterflow Heat Exchanger651
11.3.3 Special Operating Conditions652
11.3.4 Multipass and Cross-Flow Heat Exchangers652
11.4 Heat Exchanger Analysis:The Effectiveness-NTU Method659
11.4.1 Definitions660
11.4.2 Effectiveness-NTU Relations661
11.5 Methodology of a Heat Exchanger Calculation668
11.6 Compact Heat Exchangers674
11.7 Summary679
References680
Problems681
CHAPTER 12 Radiation:Processes and Properties699
12.1 Fundamental Concepts700
12.2 Radiation Intensity703
12.2.1 Definitions703
12.2.2 Relation to Emission706
12.2.3 Relation to Irradiation709
12.2.4 Relation to Radiosity711
12.3 Blackbody Radiation712
12.3.1 The Planck Distribution713
12.3.2 Wien’s Displacement Law713
12.3.3 The Stefan-Boltzmann Law714
12.3.4 Band Emission715
12.4 Sufrace Emission720
12.5 Surface Absorption,Reflection,and Transmission728
12.5.1 Absorptivity730
12.5.2 Reflectivity731
12.5.3 Transmissivity732
12.5.4 Special Considerations733
12.6 Kirchhoff s Law738
12.7 The Gray Surface740
12.8 Environmental Radiation746
12.9 Summary752
References756
Problems756
CHAPTER 13 Radiation Exchange Between Surfaces789
13.1 The View Factor790
13.1.1 The View Factor Integral790
13.1.2 View Factor Relations791
13.2 Blackbody Radiation Exchange800
13.3 Radiation Exchange Between Diffuse,Gray Surfaces in an Enclosure803
13.3.1 Net Radiation Exchange at a Surface803
13.3.2 Radiation Exchange Between Surfaces805
13.3.3 The Two-Surface Enclosure810
13.3.4 Radiation Shields812
13.3.5 The Reradiating Surface814
13.4 Multimode Heat Transfer818
13.5 Additional Effects821
13.5.1 Volumetric Absorption822
13.5.2 Gaseous Emission and Absorption822
13.6 Summary827
References828
Problems828
CHAPTER 14 Diffusion Mass Transfer859
14.1 Physical Origins and Rate Equations860
14.1.1 PhysicalOrigins860
14.1.2 Mixture Composition861
14.1.3 Fick’s Law of Diffusion862
14.1.4 Restrictive Conditions863
14.1.5 Mass Diffusion Coefficient867
14.2 Conservation of Species867
14.2.1 Conservation of Species for a Control Volume868
14.2.2 The Mass Diffusion Equation868
14.3 Boundary and Initial Conditions871
14.4 Mass Diffusion Without Homogeneous Chemical Reactions874
14.4.1 Stationary Media with Specified Surface Concentrations875
14.4.2 Stationary Media with Catalytic Surface Reactions878
14.4.3 Equimolar Counterdiffusion881
14.4.4 Evaporation in a Column884
14.5 Mass Diffusion with Homogeneous Chemical Reactions886
14.6 Transient Diffusion889
14.7 Summary893
References894
Problems895
APPENDIX A Thermophysical Properties of Matter903
APPENDIX B Mathematical Relations and Functions933
APPENDIX C Thermal Conditions Associated with Uniform Energy Generation in One-Dimensional,Steady-State Systems939
APPENDIX D Graphical Representation of One-Dimensional,Transient Conduction in the Plane Wall,Long Cylinder,and Sphere947
APPENDIX E The Convection Transfer Equations953
E.1 Conservation of Mass954
E.2 Newton’s Second Law of Motion955
E.3 Conservation of Energy958
E.4 Conservation of Species961
APPENDIX F An Integral Laminar Boundary Layer Solution for Parallel Flow Over a Flat Plate963
Index969