图书介绍

Fundamentals of heat and mass transfer fifth editionPDF|Epub|txt|kindle电子书版本网盘下载

Fundamentals of heat and mass transfer fifth edition
  • FrankP.Incroperaanddavidp.dewitt 著
  • 出版社: JohnWileyandSons
  • ISBN:0471386502
  • 出版时间:2002
  • 标注页数:981页
  • 文件大小:241MB
  • 文件页数:1001页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

Fundamentals of heat and mass transfer fifth editionPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

CHAPTER 1 Introduction2

1.1 What and How?2

1.2 Physical Origins and Rate Equations3

1.2.1 Conduction3

1.2.2 Convection6

1.2.3 Radiation9

1.2.4 Relationship to Thermodynamics12

1.3 The Conservation of Energy Requirement13

1.3.1 Conservation of Energy for a Control Volume13

1.3.2 The Surface Energy Balance21

1.3.3 Application of the Conservation Laws:Methodology24

1.4 Analysis of Heat Transfer Problems:Methodology24

1.5 Relevance of Heat Transfer27

1.6 Units and Dimensions28

1.7 Summary31

Problems34

CHAPTER 2 Introduction to Conduction51

2.1 The Conduction Rate Equation52

2.2 The Thermal Properties of Matter54

2.2.1 Thermal Conductivity54

2.2.2 Other Relevant Properties58

2.3 The Heat Diffusion Equation61

2.4 Boundary and Initial Conditions68

2.5 Summary72

References73

Problems73

CHAPTER 3 One-Dimensional,Steady-State Conduction87

3.1 The Plane Wall88

3.1.1 Temperature Distribution88

3.1.2 Thermal Resistance90

3.1.3 The Composite Wall91

3.1.4 Contact Resistance93

3.2 An Alternative Conduction Analysis101

3.3 Radial Systems104

3.3.1 The Cylinder105

3.3.2 The Sphere110

3.4 Summary of One-Dimensional Conduction Results114

3.5 Conduction with Thermal Energy Generation114

3.5.1 The Plane Wall115

3.5.2 Radial Systems121

3.5.3 Application of Resistance Concepts126

3.6 Heat Transfer from Extended Surfaces126

3.6.1 A General Conduction Analysis128

3.6.2 Fins of Uniform Cross-Sectional Area130

3.6.3 Fin Performance136

3.6.4 Fins of Nonuniform Cross-Sectional Area139

3.6.5 Overall Surface Efficiency140

3.7 Summary149

References152

Problems152

CHAPTER 4 Two-Dimensional,Steady-State Conduction183

4.1 Alternative Approaches184

4.2 The Method of Separation of Variables185

4.3 The Graphical Method189

4.3.1 Methodology of Constructing a Flux Plot190

4.3.2 Determination of the Heat Transfer Rate191

4.3.3 The Conduction Shape Factor192

4.4 Finite-Difference Equations196

4.4.1 The Nodal Network196

4.4.2 Finite-Difference Form of the Heat Equation197

4.4.3 The Energy Balance Method198

4.5 Finite-Difference Solutions205

4.5.1 The Matrix Inversion Method206

4.5.2 Gauss-Seidel Iteration207

4.5.3 Some Precautions213

4.6 Summary218

References219

Problems219

CHAPTER 5 Transient Conduction239

5.1 The Lumped Capacitance Method240

5.2 Validity of the Lumped Capacitance Method243

5.3 General Lumped Capacitance Analysis247

5.4 Spatial Effects254

5.5 The Plane Wall with Convection256

5.5.1 Exact Solution256

5.5.2 Approximate Solution257

5.5.3 Total Energy Transfer258

5.5.4 Additional Considerations259

5.6 Radial Systems with Convection260

5.6.1 Exact Solutions260

5.6.2 Approximate Solutions261

5.6.3 Total Energy Transfer261

5.6.4 Additional Considerations262

5.7 The Semi-Infinite Solid268

5.8 Multidimensional Effects274

5.9 Finite-Difference Methods280

5.9.1 Discretization of the Heat Equation:The Explicit Method280

5.9.2 Discretization of the Heat Equation:The Implicit Method288

5.10 Summary296

References297

Problems297

CHAPTER 6 Introduction to Convection325

6.1 The Convection Transfer Problem326

6.2 The Convection Boundary Layers331

6.2.1 The Velocity Boundary Layer331

6.2.2 The Thermal Boundary Layer332

6.2.3 The Concentration Boundary Layer333

6.2.4 Significance of the Boundary Layers335

6.3 Laminar and Turbulent Flow336

6.4 Boundary Layer Equations338

6.4.1 The Convection Transfer Equations339

6.4.2 The Boundary Layer Approximations344

6.5 Boundary Layer Similarity:The Normalized Boundary Layer Equations346

6.5.1 Boundary Layer Similarity Parameters346

6.5.2 Functional Form of the Solutions348

6.6 Physical Significance of the Dimensionless Parameters353

6.7 Boundary Layer Analogies356

6.7.1 The Heat and Mass Transfer Analogy356

6.7.2 Evaporative Cooling360

6.7.3 The Reynolds Analogy363

6.8 The Effects of Turbulence364

6.9 The Convection Coefficients367

6.10 Summary368

References369

Problems369

CHAPTER 7 External Flow385

7.1 The Empirical Method387

7.2 The Flat Plate in Parallel Flow389

7.2.1 Laminar Flow:A Similarity Solution389

7.2.2 Turbulent Flow395

7.2.3 Mixed Boundary Layer Conditions396

7.2.4 Special Cases397

7.3 Methodology for a Convection Calculation399

7.4 The Cylinder in Cross Flow401

7.4.1 Flow Considerations407

7.4.2 Convection Heat and Mass Transfer409

7.5 The Sphere415

7.6 Flow Across Banks of Tubes418

7.7 Impinging Jets428

7.7.1 Hydrodynamic and Geometric Considerations428

7.7.2 Convection Heat and Mass Transfer430

7.8 Packed Beds434

7.9 Summary435

References437

Problems438

CHAPTER 8 Internal Flow465

8.1 Hydrodynamic Considerations466

8.1.1 Flow Conditions466

8.1.2 The Mean Velocity467

8.1.3 Velocity Profile in the Fully Developed Region468

8.1.4 Pressure Gradient and Friction Factor in Fully Developed Flow470

8.2 Thermal Considerations471

8.2.1 The Mean Temperature472

8.2.2 Newton’s Law of Cooling473

8.2.3 Fully Developed Conditions473

8.3 The Energy Balance477

8.3.1 General Considerations477

8.3.2 Constant Surface Heat Flux478

8.3.3 Constant Surface Temperature481

8.4 Laminar Flow in Circular Tubes:Thermal Analysis and Convection Correlations485

8.4.1 The Fully Developed Region485

8.4.2 The Entry Region489

8.5 Convection Correlations:Turbulent Flow in Circular Tubes491

8.6 Convection Correlations:Noncircular Tubes495

8.7 The Concentric Tube Annulus500

8.8 Heat Transfer Enhancement502

8.9 Convection Mass Transfer503

8.10 Summary506

References509

Problems509

CHAPTER 9 Free Convection533

9.1 Physical Considerations534

9.2 The Governing Equations537

9.3 Similarity Considerations539

9.4 Laminar Free Convection on a Vertical Surface540

9.5 The Effects of Turbulence542

9.6 Empirical Correlations:External Free Convection Flows545

9.6.1 The Vertical Plate545

9.6.2 Inclined and Horizontal Plates548

9.6.3 The Long Horizontal Cylinder554

9.6.4 Spheres557

9.7 Free Convection within Parallel Plate Channels558

9.7.1 Vertical Channels559

9.7.2 Inclined Channels561

9.8 Empirical Correlations:Enclosures561

9.8.1 Rectangular Cavities561

9.8.2 Concentric Cylinders564

9.8.3 Concentric Spheres565

9.9 Combined Free and Forced Convection567

9.10 Convection Mass Transfer568

9.11 Summary569

References570

Problems572

CHAPTER 10 Boiling and Condensation593

10.1 Dimensionless Parameters in Boiling and Condensation594

10.2 Boiling Modes595

10.3 Pool Boiling596

10.3.1 The Boiling Curve596

10.3.2 Modes of Pool Boiling598

10.4 Pool Boiling Correlations601

10.4.1 Nucleate Pool Boiling602

10.4.2 Critical Heat Flux for Nucleate Pool Boiling603

10.4.3 Minimum Heat Flux603

10.4.4 Film Pool Boiling604

10.4.5 Parametric Effects on Pool Boiling605

10.5 Forced-Convection Boiling610

10.5.1 External Forced-Convection Boiling611

10.5.2 Two-Phase Flow611

10.6 Condensation:Physical Mechanisms613

10.7 Laminar Film Condensation on a Vertical Plate615

10.8 Turbulent Film Condensation619

10.9 Film Condensation on Radial Systems623

10.10 Film Condensation in Horizontal Tubes626

10.11 Dropwise Condensation627

10.12 Summary627

References628

Problems630

CHAPTER 11 Heat Exchangers641

11.1 Heat Exchanger Types642

11.2 The Overall Heat Transfer Coefficient645

11.3 Heat Exchanger Analysis:Use of the Log Mean Temperature Difference647

11.3.1 The Parallel-Flow Heat Exchanger648

11.3.2 The Counterflow Heat Exchanger651

11.3.3 Special Operating Conditions652

11.3.4 Multipass and Cross-Flow Heat Exchangers652

11.4 Heat Exchanger Analysis:The Effectiveness-NTU Method659

11.4.1 Definitions660

11.4.2 Effectiveness-NTU Relations661

11.5 Methodology of a Heat Exchanger Calculation668

11.6 Compact Heat Exchangers674

11.7 Summary679

References680

Problems681

CHAPTER 12 Radiation:Processes and Properties699

12.1 Fundamental Concepts700

12.2 Radiation Intensity703

12.2.1 Definitions703

12.2.2 Relation to Emission706

12.2.3 Relation to Irradiation709

12.2.4 Relation to Radiosity711

12.3 Blackbody Radiation712

12.3.1 The Planck Distribution713

12.3.2 Wien’s Displacement Law713

12.3.3 The Stefan-Boltzmann Law714

12.3.4 Band Emission715

12.4 Sufrace Emission720

12.5 Surface Absorption,Reflection,and Transmission728

12.5.1 Absorptivity730

12.5.2 Reflectivity731

12.5.3 Transmissivity732

12.5.4 Special Considerations733

12.6 Kirchhoff s Law738

12.7 The Gray Surface740

12.8 Environmental Radiation746

12.9 Summary752

References756

Problems756

CHAPTER 13 Radiation Exchange Between Surfaces789

13.1 The View Factor790

13.1.1 The View Factor Integral790

13.1.2 View Factor Relations791

13.2 Blackbody Radiation Exchange800

13.3 Radiation Exchange Between Diffuse,Gray Surfaces in an Enclosure803

13.3.1 Net Radiation Exchange at a Surface803

13.3.2 Radiation Exchange Between Surfaces805

13.3.3 The Two-Surface Enclosure810

13.3.4 Radiation Shields812

13.3.5 The Reradiating Surface814

13.4 Multimode Heat Transfer818

13.5 Additional Effects821

13.5.1 Volumetric Absorption822

13.5.2 Gaseous Emission and Absorption822

13.6 Summary827

References828

Problems828

CHAPTER 14 Diffusion Mass Transfer859

14.1 Physical Origins and Rate Equations860

14.1.1 PhysicalOrigins860

14.1.2 Mixture Composition861

14.1.3 Fick’s Law of Diffusion862

14.1.4 Restrictive Conditions863

14.1.5 Mass Diffusion Coefficient867

14.2 Conservation of Species867

14.2.1 Conservation of Species for a Control Volume868

14.2.2 The Mass Diffusion Equation868

14.3 Boundary and Initial Conditions871

14.4 Mass Diffusion Without Homogeneous Chemical Reactions874

14.4.1 Stationary Media with Specified Surface Concentrations875

14.4.2 Stationary Media with Catalytic Surface Reactions878

14.4.3 Equimolar Counterdiffusion881

14.4.4 Evaporation in a Column884

14.5 Mass Diffusion with Homogeneous Chemical Reactions886

14.6 Transient Diffusion889

14.7 Summary893

References894

Problems895

APPENDIX A Thermophysical Properties of Matter903

APPENDIX B Mathematical Relations and Functions933

APPENDIX C Thermal Conditions Associated with Uniform Energy Generation in One-Dimensional,Steady-State Systems939

APPENDIX D Graphical Representation of One-Dimensional,Transient Conduction in the Plane Wall,Long Cylinder,and Sphere947

APPENDIX E The Convection Transfer Equations953

E.1 Conservation of Mass954

E.2 Newton’s Second Law of Motion955

E.3 Conservation of Energy958

E.4 Conservation of Species961

APPENDIX F An Integral Laminar Boundary Layer Solution for Parallel Flow Over a Flat Plate963

Index969

热门推荐