图书介绍

Design of machinery an introduction to the synthesis and analysis of mechanisms and machinesPDF|Epub|txt|kindle电子书版本网盘下载

Design of machinery an introduction to the synthesis and analysis of mechanisms and machines
  • Robert L. Norton 著
  • 出版社: 机械工业出版社
  • ISBN:7111112474
  • 出版时间:2003
  • 标注页数:811页
  • 文件大小:184MB
  • 文件页数:831页
  • 主题词:机械设计与制图

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

Design of machinery an introduction to the synthesis and analysis of mechanisms and machinesPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

PART Ⅰ KINEMATICS OF MECHANISMS1

Chapter 1 Introduction3

1.0 Purpose3

1.1 Kinematics and Kinetics3

1.2 Mechanisms and Machines4

1.3 A Brief History of Kinematics5

1.4 Applications of Kinematics6

1.5 The Design Process7

Design, Invention, Creativity7

Identification of Need8

Background Research9

Goal Statement9

Performance Specifications9

Ideation and Invention10

Analysis11

Selection12

Detailed Design13

Prototyping and Testing13

Production13

1.6 Other Approaches to Design14

Axiomatic Design15

1.7 Multiple Solutions15

1.8 Human Factors Engineering15

1.9 The Engineering Report16

1.10 Units16

1.11 What's to Come18

1.12 References19

1.13 Bibliography20

Chapter 2 Kinematics Fundamentals22

2.0 Introduction22

2.1 Degrees of Freedom22

2.2 Types of Motion23

2.3 Links, Joints, and Kinematic Chains24

2.4 Determining Degree of Freedom28

Degree of Freedom in Planar Mechanisms29

Degree of Freedom in Spatial Mechanisms32

2.5 Mechanisms and Structures32

2.6 Number Synthesis33

2.7 Paradoxes37

2.8 Isomers38

2.9 Linkage Transformation40

2.10 Intermittent Motion42

2.11 Inversion44

2.12 The Grashof Condition46

Classification of the Fourbar Linkage49

2.13 Linkages of More Than Four Bars52

Geared Fivebar Linkages52

Sixbar Linkages53

Grashof-type Rotatability Criteria for Higher-order Linkages53

2.14 Springs as Links54

2.15 Practical Considerations55

Pin Joints versus Sliders and Half Joints55

Cantilever versus Straddle Mount57

Short Links58

Bearing Ratio58

Linkages versus Cams59

2.16 Motor and Drives60

Electric Motors60

Air and Hydraulic Motors65

Air and Hydraulic Cylinders65

Solenoids66

2.17 References66

2.18 Problems67

Chapter 3 Graphical Linkage Synthesis76

3.0 Introduction76

3.1 Synthesis76

3.2 Function, Path, and Motion Generation78

3.3 Limiting Conditions80

3.4 Dimensional Synthesis82

Two-Position Synthesis83

Three-Position Synthesis with Specified Moving Pivots89

Three-Position Synthesis with Alternate Moving Pivots90

Three-Position Synthesis with Specified Fixed Pivots93

Position Synthesis for More Than Three Positions97

3.5 Quick-Return Mechanisms97

Fourbar Quick-Return98

Sixbar Quick-Return100

3.6.Coupler Curves103

3.7 Cognates112

Parallel Motion117

Geared Fivebar Cognates of the Fourbar119

3.8 Straight-Line Mechanisms120

Designing Optimum Straight-Line Fourbar Linkages122

3.9 Dwell Mechanisms125

Single-Dwell Linkages126

Double-Dwell Linkages128

3.10 References130

3.11 Bibliography131

3.12 Problems132

3.13 Projects140

Chapter 4 Position Analysis144

4.0 Introduction144

4.1 Coordinate Systems146

4.2 Position and Displacement147

Position147

Displacement147

4.3 Translation, Rotation, and Complex Motion149

Translation149

Rotation149

Complex Motion149

Theorems150

4.4 Graphical Position Analysis of Linkages151

4.5 Algebraic Position Analysis of Linkages152

Vector Loop Representation of Linkages153

Complex Numbers as Vectors154

The Vector Loop Equation for a Fourbar Linkage156

4.6 The Fourbar Slider-Crank Position Solution159

4.7 An Inverted Slider-Crank Position Solution161

4.8 Linkages of More Than Four Bars164

The Geared Fivebar Linkage164

Sixbar Linkages167

4.9 Position of Any Point on a Linkage168

4.10 Transmission Angles169

Extreme Values of the Transmission Angle169

4.11 Toggle Positions171

4.12 Circuits and Branches in Linkages173

4.13 Newton-Raphson Solution Method174

One-Dimensional Root-Finding (Newton's Method)174

Multidimensional Root-Finding (Newton-Raphson Method)176

Newton-Raphson Solution for the Fourbar Linkage177

Equation Solvers178

4.14 References178

4.15 Problems178

Chapter 5 Analytical Linkage Synthesis188

5.0 Introduction188

5.1 Types of Kinematic Synthesis188

5.2 Precision Points189

5.3 Two-Position Motion Generation by Analytical Synthesis189

5.4 Comparison of Analytical and Graphical Two-Position Synthesis196

5.5 Simultaneous Equation Solution199

5.6 Three-Position Motion Generation by Analytical Synthesis201

5.7 Comparison of Analytical and Graphical Three-Position Synthesis206

5.8 Synthesis for a Specified Fixed Pivot Location211

5.9 Center-Point and Circle-Point Circles217

5.10 Four- and Five-Position Analytical Synthesis219

5.11 Analytical Synthesis of a Path Generator with Prescribed Timing220

5.12 Analytical Synthesis of a Fourbar Function Generator220

5.13 Other Linkage Synthesis Methods224

Precision Point Methods226

Coupler Curve Equation Methods227

Optimization Methods227

5.14 References230

5.15 Problems232

Chapter 6 Velocity Analysis241

6.0 Introduction241

6.1 Definition of Velocity241

6.2 Graphical Velocity Analysis244

6.3 Instant Centers of Velocity249

6.4 Velocity Analysis with Instant Centers256

Angular Velocity Ratio257

Mechanical Advantage259

Using Instant Centers in Linkage Design261

6.5 Centrodes263

A “Linkless” Linkage266

Cusps267

6.6 Velocity of Slip267

6.7 Analytical Solutions for Velocity Analysis271

The Fourbar Pin-Jointed Linkage271

The Fourbar Slider-Crank274

The Fourbar Inverted Slider-Crank276

6.8 Velocity Analysis of the Geared Fivebar Linkage278

6.9 Velocity of Any Point on a Linkage279

6.10 References280

6.11 Problems281

Chapter 7 Acceleration Analysis300

7.0 Introduction300

7.1 Definition of Acceleration300

7.2 Graphical Acceleration Analysis303

7.3 Analytical Solutions for Acceleration Analysis308

The Fourbar Pin-Jointed Linkage308

The Fourbar Slider-Crank311

Coriolis Acceleration313

The Fourbar Inverted Slider-Crank315

7.4 Acceleration Analysis of the Geared Fivebar Linkage319

7.5 Acceleration of any Point on a Linkage320

7.6 Human Tolerance of Acceleration322

7.7 Jerk324

7.8 Linkages of N Bars327

7.9 References327

7.10 Problems327

Chapter 8 Cam Design345

8.0 Introduction345

8.1 Cam Terminology346

Type of Follower Motion347

Type of Joint Closure348

Type of Follower348

Type of Cam348

Type of Motion Constraints351

Type of Motion Program351

8.2 S V A J Diagrams352

8.3 Double-Dwell Cam Design—Choosing SVAJFunctions353

The Fundamental Law of Cam Design356

Simple Harmonic Motion (SHM)357

Cycloidal Displacement359

Combined Functions362

8.4 Single-Dwell Cam Design—ChoosingSVAJFunctions374

8.5 Polynomial Functions378

Double-Dwell Applications of Polynomials378

Single-Dwell Applications of Polynomials382

8.6 Critical Path Motion (CPM)385

Polynomials Used for Critical Path Motion386

Half-Period Harmonic Family Functions393

8.7 Sizing the Cam—Pressure Angle and Radius of Curvature396

Pressure Angle—Roller Followers397

Choosing a Prime Circle Radius400

Overturning Moment—Flat-Faced Follower402

Radius of Curvature—Roller Follower403

Radius of Curvature—Flat-Faced Follower407

8.8 Cam Manufacturing Considerations412

Geometric Generation413

Manual or NC Machining to Cam Coordinates (Plunge-Cutting)413

Continuous Numerical Control with Linear Interpolation414

Continuous Numerical Control with Circular Interpolation416

Analog Duplication416

Actual Cam Performance Compared to Theoretical Performance418

8.9 Practical Design Considerations421

Translating or Oscillating Follower?421

Force- or Form-Closed?422

Radial or Axial Cam?422

Roller or Flat-Faced Follower?423

To Dwell or Not to Dwell?423

To Grind or Not to Grind?424

To Lubricate or Not to Lubricate?424

8.10 References424

8.11 Problems425

8.12 Projects429

Chapter 9 Gear Trains432

9.0 Introduction432

9.1 Rolling Cylinders433

9.2 The Fundamental Law of Gearing434

The Involute Tooth Form435

Pressure Angle437

Changing Center Distance438

Backlash438

9.3 Gear Tooth Nomenclature440

9.4 Interference and Undercutting442

Unequal-Addendum Tooth Forms444

9.5 Contact Ratio444

9.6 Gear Types447

Spur, Helical, and Herringbone Gears447

Worms and Worm Gears448

Rack and Pinion448

Bevel and Hypoid Gears449

Noncircular Gears450

Belt and Chain Drives450

9.7 Simple Gear Trains452

9.8 Compound Gear Trains453

Design of Compound Trains454

Design of Reverted Compound Trains456

An Algorithm for the Design of Compound Gear Trains458

9.9 Epicyclic or Planetary Gear Trains462

The Tabular Method464

The Formula Method469

9.10 Efficiency of Gear Trains470

9.11 Transmissions474

9.12 Differentials477

9.13 References479

9.14 Problems479

PART Ⅱ DYNAMICS OF MACHINERY489

Chapter 10 Dynamics Fundamentals491

10.0 Introduction491

10.1 Newton's Laws of Motion491

10.2 Dynamic Models492

10.3 Mass492

10.4 Mass Moment and Center of Gravity493

10.5 Mass Moment of Inertia (Second Moment of Mass)495

10.6 Parallel Axis Theorem (Transfer Theorem)497

10.7 Radius of Gyration498

10.8 Center of Percussion498

10.9 Lumped Parameter Dynamic Models500

Spring Constant500

Damping501

10.10 Equivalent Systems503

Combining Dampers504

Combining Springs505

Combining Masses506

Lever and Gear Ratios506

10.11 Solution Methods512

10.12 The Principle of d'Alembert513

10.13 Energy Methods—Virtual Work515

10.14 References517

10.15 Problems518

Chapter 11 Dynamic Force Anclysis521

11.0 Introduction521

11.1 Newtonian Solution Method521

11.2 Single Link in Pure Rotation522

11.3 Force Analysis of a Threebar Crank-Slide Linkage525

11.4 Force Analysis of a Fourbar Linkage531

11.5 Force Analysis of a Fourbar Slider-Crank Linkage538

11.6 Force Analysis of the Inverted Slider-Crank541

11.7 Force Analysis—Linkages with More Than Four Bars543

11.8 Shaking Forces and Shaking Torque544

11.9 Program FOURBAR545

11.10 Linkage Force Analysis by Energy Methods545

11.11 Controlling Input Torque—Flywheels548

11.12 A Linkage Force Transmission Index554

11.13 Practical Considerations556

11.14 References557

11.15 Problems557

11.16 Projects567

Chapter 12 Balancing570

12.0 Introduction570

12.1 Static Balance571

12.2 Dynamic Balance574

12.3 Balancing Linkages579

Complete Force Balance of Linkages580

12.4 Effect of Balancing on Shaking and Pin Forces583

12.5 Effect of Balancing on Input Torque585

12.6 Balancing the Shaking Moment in Linkages586

12.7 Measuring and Correcting Imbalance590

12.8 References591

12.9 Problems592

Chapter 13 Engine Dynamics598

13.0 Introduction598

13.1 Engine Design600

13.2 Slider-Crank Kinematics605

13.3 Gas Force and Gas Torque610

13.4 Equivalent Masses614

13.5 Inertia and Shaking Forces617

13.6 Inertia and Shaking Torques620

13.7 Total Engine Torque622

13.8 Flywheels622

13.9 Pin Forces in the Single-Cylinder Engine623

13.10 Balancing the Single-Cylinder Engine631

13.11 Design Trade-offs and Ratios634

Conrod/Crank Ratio634

Bore/Stroke Ratio634

Materials635

13.12 Bibliography635

13.13 Problems635

13.14 Projects638

Chapter 14 Multicylinder Engines639

14.0 Introduction639

14.1 Multicylinder Engine Designs641

14.2 The Crank Phase Diagram644

14.3 Shaking Forces in Inline Engines646

14.4 Inertia Torque in Inline Engines649

14.5 Shaking Moment in Inline Engines650

14.6 Even Firing652

Two-Stroke Cycle Engine653

Four-Stroke Cycle Engine655

14.7 Vee Engine Configurations661

14.8 Opposed Engine Configurations674

14.9 Balancing Multicylinder Engines675

Secondary Balance in the Four-Cylinder Inline Engine679

14.10 References682

14.11 Bibliography682

14.12 Problems682

14.13 Projects683

Chapter 15 Cam Dynamics685

15.0 Introduction685

15.1 Dynamic Force Analysis of the Force-Closed Cam Follower686

Undamped Response686

Damped Response689

15.2 Resonance696

15.3 Kinetostatic Force Analysis of the Force-Closed Cam-Follower698

15.4 Kinetostatic Force Analysis of the Form-Closed Cam-Follower702

15.5 Camshaft Torque706

15.6 Measuring Dynamic Forces and Accelerations709

15.7 Practical Considerations713

15.8 References713

15.9 Bibliography713

15.10 Problems714

Chapter 16 Engineering Design717

16.0 Introduction717

16.1 A Design Case Study718

16.2 Closure723

16.3 References723

Appendix A Computer Programs725

A.0 Introduction725

A.1 General Information727

A.2 General Program Operation727

A.3 Program FOURBAR735

A.4 Program FIVEBAR743

A.5 Program SIXBAR745

A.6 Program SLIDER749

A.7 Program DYNACAM751

A.8 Program ENGINE757

A.9 Program MATRIX764

Appendix B Material Properties765

Appendix C Geometric Properties769

Appendix D Spring Data771

Appendix E Atlas of Geared Fivebar Linkage Coupler Curves775

Appendix F Answers to Selected Problems781

Index795

CD-ROM Index809

热门推荐