图书介绍
Design of machinery an introduction to the synthesis and analysis of mechanisms and machinesPDF|Epub|txt|kindle电子书版本网盘下载
![Design of machinery an introduction to the synthesis and analysis of mechanisms and machines](https://www.shukui.net/cover/11/33905927.jpg)
- Robert L. Norton 著
- 出版社: 机械工业出版社
- ISBN:7111112474
- 出版时间:2003
- 标注页数:811页
- 文件大小:184MB
- 文件页数:831页
- 主题词:机械设计与制图
PDF下载
下载说明
Design of machinery an introduction to the synthesis and analysis of mechanisms and machinesPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
PART Ⅰ KINEMATICS OF MECHANISMS1
Chapter 1 Introduction3
1.0 Purpose3
1.1 Kinematics and Kinetics3
1.2 Mechanisms and Machines4
1.3 A Brief History of Kinematics5
1.4 Applications of Kinematics6
1.5 The Design Process7
Design, Invention, Creativity7
Identification of Need8
Background Research9
Goal Statement9
Performance Specifications9
Ideation and Invention10
Analysis11
Selection12
Detailed Design13
Prototyping and Testing13
Production13
1.6 Other Approaches to Design14
Axiomatic Design15
1.7 Multiple Solutions15
1.8 Human Factors Engineering15
1.9 The Engineering Report16
1.10 Units16
1.11 What's to Come18
1.12 References19
1.13 Bibliography20
Chapter 2 Kinematics Fundamentals22
2.0 Introduction22
2.1 Degrees of Freedom22
2.2 Types of Motion23
2.3 Links, Joints, and Kinematic Chains24
2.4 Determining Degree of Freedom28
Degree of Freedom in Planar Mechanisms29
Degree of Freedom in Spatial Mechanisms32
2.5 Mechanisms and Structures32
2.6 Number Synthesis33
2.7 Paradoxes37
2.8 Isomers38
2.9 Linkage Transformation40
2.10 Intermittent Motion42
2.11 Inversion44
2.12 The Grashof Condition46
Classification of the Fourbar Linkage49
2.13 Linkages of More Than Four Bars52
Geared Fivebar Linkages52
Sixbar Linkages53
Grashof-type Rotatability Criteria for Higher-order Linkages53
2.14 Springs as Links54
2.15 Practical Considerations55
Pin Joints versus Sliders and Half Joints55
Cantilever versus Straddle Mount57
Short Links58
Bearing Ratio58
Linkages versus Cams59
2.16 Motor and Drives60
Electric Motors60
Air and Hydraulic Motors65
Air and Hydraulic Cylinders65
Solenoids66
2.17 References66
2.18 Problems67
Chapter 3 Graphical Linkage Synthesis76
3.0 Introduction76
3.1 Synthesis76
3.2 Function, Path, and Motion Generation78
3.3 Limiting Conditions80
3.4 Dimensional Synthesis82
Two-Position Synthesis83
Three-Position Synthesis with Specified Moving Pivots89
Three-Position Synthesis with Alternate Moving Pivots90
Three-Position Synthesis with Specified Fixed Pivots93
Position Synthesis for More Than Three Positions97
3.5 Quick-Return Mechanisms97
Fourbar Quick-Return98
Sixbar Quick-Return100
3.6.Coupler Curves103
3.7 Cognates112
Parallel Motion117
Geared Fivebar Cognates of the Fourbar119
3.8 Straight-Line Mechanisms120
Designing Optimum Straight-Line Fourbar Linkages122
3.9 Dwell Mechanisms125
Single-Dwell Linkages126
Double-Dwell Linkages128
3.10 References130
3.11 Bibliography131
3.12 Problems132
3.13 Projects140
Chapter 4 Position Analysis144
4.0 Introduction144
4.1 Coordinate Systems146
4.2 Position and Displacement147
Position147
Displacement147
4.3 Translation, Rotation, and Complex Motion149
Translation149
Rotation149
Complex Motion149
Theorems150
4.4 Graphical Position Analysis of Linkages151
4.5 Algebraic Position Analysis of Linkages152
Vector Loop Representation of Linkages153
Complex Numbers as Vectors154
The Vector Loop Equation for a Fourbar Linkage156
4.6 The Fourbar Slider-Crank Position Solution159
4.7 An Inverted Slider-Crank Position Solution161
4.8 Linkages of More Than Four Bars164
The Geared Fivebar Linkage164
Sixbar Linkages167
4.9 Position of Any Point on a Linkage168
4.10 Transmission Angles169
Extreme Values of the Transmission Angle169
4.11 Toggle Positions171
4.12 Circuits and Branches in Linkages173
4.13 Newton-Raphson Solution Method174
One-Dimensional Root-Finding (Newton's Method)174
Multidimensional Root-Finding (Newton-Raphson Method)176
Newton-Raphson Solution for the Fourbar Linkage177
Equation Solvers178
4.14 References178
4.15 Problems178
Chapter 5 Analytical Linkage Synthesis188
5.0 Introduction188
5.1 Types of Kinematic Synthesis188
5.2 Precision Points189
5.3 Two-Position Motion Generation by Analytical Synthesis189
5.4 Comparison of Analytical and Graphical Two-Position Synthesis196
5.5 Simultaneous Equation Solution199
5.6 Three-Position Motion Generation by Analytical Synthesis201
5.7 Comparison of Analytical and Graphical Three-Position Synthesis206
5.8 Synthesis for a Specified Fixed Pivot Location211
5.9 Center-Point and Circle-Point Circles217
5.10 Four- and Five-Position Analytical Synthesis219
5.11 Analytical Synthesis of a Path Generator with Prescribed Timing220
5.12 Analytical Synthesis of a Fourbar Function Generator220
5.13 Other Linkage Synthesis Methods224
Precision Point Methods226
Coupler Curve Equation Methods227
Optimization Methods227
5.14 References230
5.15 Problems232
Chapter 6 Velocity Analysis241
6.0 Introduction241
6.1 Definition of Velocity241
6.2 Graphical Velocity Analysis244
6.3 Instant Centers of Velocity249
6.4 Velocity Analysis with Instant Centers256
Angular Velocity Ratio257
Mechanical Advantage259
Using Instant Centers in Linkage Design261
6.5 Centrodes263
A “Linkless” Linkage266
Cusps267
6.6 Velocity of Slip267
6.7 Analytical Solutions for Velocity Analysis271
The Fourbar Pin-Jointed Linkage271
The Fourbar Slider-Crank274
The Fourbar Inverted Slider-Crank276
6.8 Velocity Analysis of the Geared Fivebar Linkage278
6.9 Velocity of Any Point on a Linkage279
6.10 References280
6.11 Problems281
Chapter 7 Acceleration Analysis300
7.0 Introduction300
7.1 Definition of Acceleration300
7.2 Graphical Acceleration Analysis303
7.3 Analytical Solutions for Acceleration Analysis308
The Fourbar Pin-Jointed Linkage308
The Fourbar Slider-Crank311
Coriolis Acceleration313
The Fourbar Inverted Slider-Crank315
7.4 Acceleration Analysis of the Geared Fivebar Linkage319
7.5 Acceleration of any Point on a Linkage320
7.6 Human Tolerance of Acceleration322
7.7 Jerk324
7.8 Linkages of N Bars327
7.9 References327
7.10 Problems327
Chapter 8 Cam Design345
8.0 Introduction345
8.1 Cam Terminology346
Type of Follower Motion347
Type of Joint Closure348
Type of Follower348
Type of Cam348
Type of Motion Constraints351
Type of Motion Program351
8.2 S V A J Diagrams352
8.3 Double-Dwell Cam Design—Choosing SVAJFunctions353
The Fundamental Law of Cam Design356
Simple Harmonic Motion (SHM)357
Cycloidal Displacement359
Combined Functions362
8.4 Single-Dwell Cam Design—ChoosingSVAJFunctions374
8.5 Polynomial Functions378
Double-Dwell Applications of Polynomials378
Single-Dwell Applications of Polynomials382
8.6 Critical Path Motion (CPM)385
Polynomials Used for Critical Path Motion386
Half-Period Harmonic Family Functions393
8.7 Sizing the Cam—Pressure Angle and Radius of Curvature396
Pressure Angle—Roller Followers397
Choosing a Prime Circle Radius400
Overturning Moment—Flat-Faced Follower402
Radius of Curvature—Roller Follower403
Radius of Curvature—Flat-Faced Follower407
8.8 Cam Manufacturing Considerations412
Geometric Generation413
Manual or NC Machining to Cam Coordinates (Plunge-Cutting)413
Continuous Numerical Control with Linear Interpolation414
Continuous Numerical Control with Circular Interpolation416
Analog Duplication416
Actual Cam Performance Compared to Theoretical Performance418
8.9 Practical Design Considerations421
Translating or Oscillating Follower?421
Force- or Form-Closed?422
Radial or Axial Cam?422
Roller or Flat-Faced Follower?423
To Dwell or Not to Dwell?423
To Grind or Not to Grind?424
To Lubricate or Not to Lubricate?424
8.10 References424
8.11 Problems425
8.12 Projects429
Chapter 9 Gear Trains432
9.0 Introduction432
9.1 Rolling Cylinders433
9.2 The Fundamental Law of Gearing434
The Involute Tooth Form435
Pressure Angle437
Changing Center Distance438
Backlash438
9.3 Gear Tooth Nomenclature440
9.4 Interference and Undercutting442
Unequal-Addendum Tooth Forms444
9.5 Contact Ratio444
9.6 Gear Types447
Spur, Helical, and Herringbone Gears447
Worms and Worm Gears448
Rack and Pinion448
Bevel and Hypoid Gears449
Noncircular Gears450
Belt and Chain Drives450
9.7 Simple Gear Trains452
9.8 Compound Gear Trains453
Design of Compound Trains454
Design of Reverted Compound Trains456
An Algorithm for the Design of Compound Gear Trains458
9.9 Epicyclic or Planetary Gear Trains462
The Tabular Method464
The Formula Method469
9.10 Efficiency of Gear Trains470
9.11 Transmissions474
9.12 Differentials477
9.13 References479
9.14 Problems479
PART Ⅱ DYNAMICS OF MACHINERY489
Chapter 10 Dynamics Fundamentals491
10.0 Introduction491
10.1 Newton's Laws of Motion491
10.2 Dynamic Models492
10.3 Mass492
10.4 Mass Moment and Center of Gravity493
10.5 Mass Moment of Inertia (Second Moment of Mass)495
10.6 Parallel Axis Theorem (Transfer Theorem)497
10.7 Radius of Gyration498
10.8 Center of Percussion498
10.9 Lumped Parameter Dynamic Models500
Spring Constant500
Damping501
10.10 Equivalent Systems503
Combining Dampers504
Combining Springs505
Combining Masses506
Lever and Gear Ratios506
10.11 Solution Methods512
10.12 The Principle of d'Alembert513
10.13 Energy Methods—Virtual Work515
10.14 References517
10.15 Problems518
Chapter 11 Dynamic Force Anclysis521
11.0 Introduction521
11.1 Newtonian Solution Method521
11.2 Single Link in Pure Rotation522
11.3 Force Analysis of a Threebar Crank-Slide Linkage525
11.4 Force Analysis of a Fourbar Linkage531
11.5 Force Analysis of a Fourbar Slider-Crank Linkage538
11.6 Force Analysis of the Inverted Slider-Crank541
11.7 Force Analysis—Linkages with More Than Four Bars543
11.8 Shaking Forces and Shaking Torque544
11.9 Program FOURBAR545
11.10 Linkage Force Analysis by Energy Methods545
11.11 Controlling Input Torque—Flywheels548
11.12 A Linkage Force Transmission Index554
11.13 Practical Considerations556
11.14 References557
11.15 Problems557
11.16 Projects567
Chapter 12 Balancing570
12.0 Introduction570
12.1 Static Balance571
12.2 Dynamic Balance574
12.3 Balancing Linkages579
Complete Force Balance of Linkages580
12.4 Effect of Balancing on Shaking and Pin Forces583
12.5 Effect of Balancing on Input Torque585
12.6 Balancing the Shaking Moment in Linkages586
12.7 Measuring and Correcting Imbalance590
12.8 References591
12.9 Problems592
Chapter 13 Engine Dynamics598
13.0 Introduction598
13.1 Engine Design600
13.2 Slider-Crank Kinematics605
13.3 Gas Force and Gas Torque610
13.4 Equivalent Masses614
13.5 Inertia and Shaking Forces617
13.6 Inertia and Shaking Torques620
13.7 Total Engine Torque622
13.8 Flywheels622
13.9 Pin Forces in the Single-Cylinder Engine623
13.10 Balancing the Single-Cylinder Engine631
13.11 Design Trade-offs and Ratios634
Conrod/Crank Ratio634
Bore/Stroke Ratio634
Materials635
13.12 Bibliography635
13.13 Problems635
13.14 Projects638
Chapter 14 Multicylinder Engines639
14.0 Introduction639
14.1 Multicylinder Engine Designs641
14.2 The Crank Phase Diagram644
14.3 Shaking Forces in Inline Engines646
14.4 Inertia Torque in Inline Engines649
14.5 Shaking Moment in Inline Engines650
14.6 Even Firing652
Two-Stroke Cycle Engine653
Four-Stroke Cycle Engine655
14.7 Vee Engine Configurations661
14.8 Opposed Engine Configurations674
14.9 Balancing Multicylinder Engines675
Secondary Balance in the Four-Cylinder Inline Engine679
14.10 References682
14.11 Bibliography682
14.12 Problems682
14.13 Projects683
Chapter 15 Cam Dynamics685
15.0 Introduction685
15.1 Dynamic Force Analysis of the Force-Closed Cam Follower686
Undamped Response686
Damped Response689
15.2 Resonance696
15.3 Kinetostatic Force Analysis of the Force-Closed Cam-Follower698
15.4 Kinetostatic Force Analysis of the Form-Closed Cam-Follower702
15.5 Camshaft Torque706
15.6 Measuring Dynamic Forces and Accelerations709
15.7 Practical Considerations713
15.8 References713
15.9 Bibliography713
15.10 Problems714
Chapter 16 Engineering Design717
16.0 Introduction717
16.1 A Design Case Study718
16.2 Closure723
16.3 References723
Appendix A Computer Programs725
A.0 Introduction725
A.1 General Information727
A.2 General Program Operation727
A.3 Program FOURBAR735
A.4 Program FIVEBAR743
A.5 Program SIXBAR745
A.6 Program SLIDER749
A.7 Program DYNACAM751
A.8 Program ENGINE757
A.9 Program MATRIX764
Appendix B Material Properties765
Appendix C Geometric Properties769
Appendix D Spring Data771
Appendix E Atlas of Geared Fivebar Linkage Coupler Curves775
Appendix F Answers to Selected Problems781
Index795
CD-ROM Index809