图书介绍
Internal combustion engine fundamentalsPDF|Epub|txt|kindle电子书版本网盘下载
![Internal combustion engine fundamentals](https://www.shukui.net/cover/10/33986577.jpg)
- Heywood;John B. 著
- 出版社: McGrawHill
- ISBN:007028637X
- 出版时间:1988
- 标注页数:930页
- 文件大小:123MB
- 文件页数:956页
- 主题词:
PDF下载
下载说明
Internal combustion engine fundamentalsPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter 1 Engine Types and Their Operation1
1.1 Introduction and Historical Perspective1
1.2 Engine Classifications7
1.3 Engine Operating Cycles9
1.4 Engine Components12
1.5 Spark-Ignition Engine Operation15
1.6 Examples of Spark-Ignition Engines19
1.7 Compression-Ignition Engine Operation25
1.8 Examples of Diesel Engines31
1.9 Stratified-Charge Engines37
Chapter 2 Engine Design and Operating Parameters42
2.1 Important Engine Characteristics42
2.2 Geometrical Properties of Reciprocating Engines43
2.3 Brake Torque and Power45
2.4 Indicated Work Per Cycle46
2.5 Mechanical Efficiency48
2.6 Road-Load Power49
2.7 Mean Effective Pressure50
2.8 Specific Fuel Consumption and Efficiency51
2.9 Air/Fuel and Fuel/Air Ratios53
2.10 Volumetric Efficiency53
2.11 Engine Specific Weight and Specific Volume54
2.12 Correction Factors for Power and Volumetric Efficiency54
2.13 Specific Emissions and Emissions Index56
2.14 Relationships between Performance Parameters56
2.15 Engine Design and Performance Data57
Chapter 3 Thermochemistry of Fuel-Air Mixtures62
3.1 Characterization of Flames62
3.2 Ideal Gas Model64
3.3 Composition of Air and Fuels64
3.4 Combustion Stoichiometry68
3.5 The First Law of Thermodynamics and Combustion72
3.5.1 Energy and Enthalpy Balances72
3.5.2 Enthalpies of Formation76
3.5.3 Heating Values78
3.5.4 Adiabatic Combustion Processes80
3.5.5 Combustion Efficiency of an Internal Combustion Engine81
3.6 The Second Law of Thermodynamics Applied to Combustion83
3.6.1 Entropy83
3.6.2 Maximum Work from an Internal Combustion Engine and Efficiency83
3.7 Chemically Reacting Gas Mixtures85
3.7.1 Chemical Equilibrium86
3.7.2 Chemical Reaction Rates92
Chapter 4 Properties of Working Fluids100
4.1 Introduction100
4.2 Unburned Mixture Composition102
4.3 Gas Property Relationships107
4.4 A Simple Analytic Ideal Gas Model109
4.5 Thermodynamic Charts112
4.5.1 Unburned Mixture Charts112
4.5.2 Burned Mixture Charts116
4.5.3 Relation between Unburned and Burned Mixture Charts123
4.6 Tables of Properties and Composition127
4.7 Computer Routines for Property and Composition Calculations130
4.7.1 Unburned Mixtures130
4.7.2 Burned Mixtures135
4.8 Transport Properties141
4.9 Exhaust Gas Composition145
4.9.1 Species Concentration Data145
4.9.2 Equivalence Ratio Determination from Exhaust Gas Constituents148
4.9.3 Effects of Fuel/Air Ratio Nonuniformity152
4.9.4 Combustion Inefficiency154
Chapter 5 Ideal Models of Engine Cycles161
5.1 Introduction161
5.2 Ideal Models of Engine Processes162
5.3 Thermodynamic Relations for Engine Processes164
5.4 Cycle Analysis with Ideal Gas Working Fluid with c v and c p Constant169
5.4.1 Constant-Volume Cycle169
5.4.2 Limited- and Constant-Pressure Cycles172
5.4.3 Cycle Comparison173
5.5 Fuel-Air Cycle Analysis177
5.5.1 SI Engine Cycle Simulation178
5.5.2 CI Engine Cycle Simulation180
5.5.3 Results of Cycle Calculations181
5.6 Overexpanded Engine Cycles183
5.7 Availability Analysis of Engine Processes186
5.7.1 Availability Relationships186
5.7.2 Entropy Changes in Ideal Cycles188
5.7.3 Availability Analysis of Ideal Cycles189
5.7.4 Effect of Equivalence Ratio192
5.8 Comparison with Real Engine Cycles193
Chapter 6 Gas Exchange Processes205
6.1 Inlet and Exhaust Prccesses in the Four-Stroke Cycle206
6.2 Volumetric Efficiency209
6.2.1 Quasi-Static Effects209
6.2.2 Combined Quasi-Static and Dynamic Effects212
6.2.3 Variation with Speed,and Valve Area,Lift,and Timing216
6.3 Flow Through Valves220
6.3.1 Poppet Valve Geometry and Timing220
6.3.2 Flow Rate and Discharge Coefficients225
6.4 Residual Gas Fraction230
6.5 Exhaust Gas Flow Rate and Temperature Variation231
6.6 Scavenging in Two-Stroke Cycle Engines235
6.6.1 Two-Stroke Engine Configurations235
6.6.2 Scavenging Parameters and Models237
6.6.3 Actual Scavenging Processes240
6.7 Flow Through Ports245
6.8 Supercharging and Turbocharging248
6.8.1 Methods of Power Boosting248
6.8.2 Basic Relationships249
6.8.3 Compressors255
6.8.4 Turbines263
6.8.5 Wave-Compression Devices270
Chapter 7 SI Engine Fuel Metering and Manifold Phenomena279
7.1 Spark-Ignition Engine Mixture Requirements279
7.2 Carburetors282
7.2.1 Carburetor Fundamentals282
7.2.2 Modern Carburetor Design285
7.3 Fuel-Injection Systems294
7.3.1 Multipoint Port Injection294
7.3.2 Single-Point Throttle-Body Injection299
7.4 Feedback Systems301
7.5 Flow Past Throttle Plate304
7.6 Flow in Intake Manifolds308
7.6.1 Design Requirements308
7.6.2 Air-Flow Phenomena309
7.6.3 Fuel-Flow Phenomena314
Chapter 8 Charge Motion within the Cylinder326
8.1 Intake Jet Flow326
8.2 Mean Velocity and Turbulence Characteristics330
8.2.1 Definitions330
8.2.2 Application to Engine Velocity Data336
8.3 Swirl342
8.3.1 Swirl Measurement343
8.3.2 Swirl Generation during Induction345
8.3.3 Swirl Modification within the Cylinder349
8.4 Squish353
8.5 Prechamber Engine Flows357
8.6 Crevice Flows and Blowby360
8.7 Flows Generated by Piston-Cylinder Wall Interaction365
Chapter 9 Combustion in Spark-Ignition Engines371
9.1 Essential Features of Process371
9.2 Thermodynamic Analysis of SI Engine Combustion376
9.2.1 Burned and Unburned Mixture States376
9.2.2 Analysis of Cylinder Pressure Data383
9.2.3 Combustion Process Characterization389
9.3 Flame Structure and Speed390
9.3.1 Experimental Observations390
9.3.2 Flame Structure395
9.3.3 Laminar Burning Speeds402
9.3.4 Flame Propagation Relations406
9.4 Cyclic Variations in Combustion,Partial Burning,and Misfire413
9.4.1 Observations and Definitions413
9.4.2 Causes of Cycle-by-Cycle and Cylinder-to-Cylinder Variations419
9.4.3 Partial Burning,Misfire,and Engine Stability424
9.5 Spark Ignition427
9.5.1 Ignition Fundamentals427
9.5.2 Conventional Ignition Systems437
9.5.3 Alternative Ignition Approaches443
9.6 Abnormal Combustion:Knock and Surface Ignition450
9.6.1 Description of Phenomena450
9.6.2 Knock Fundamentals457
9.6.3 Fuel Factors470
Chapter 10 Combustion in Compression-Ignition Engines491
10.1 Essential Features of Process491
10.2 Types of Diesel Combustion Systems493
10.2.1 Direct-Injection Systems493
10.2.2 Indirect-Injection Systems494
10.2.3 Comparison of Different Combustion Systems495
10.3 Phenomenological Model of Compression-Ignition Engine Combustion497
10.3.1 Photographic Studies of Engine Combustion497
10.3.2 Combustion in Direct-Injection,Multispray Systems503
10.3.3 Application of Model to Other Combustion Systems506
10.4 Analysis of Cylinder Pressure Data508
10.4.1 Combustion Efficiency509
10.4.2 Direct-Injection Engines509
10.4.3 Indirect-Injection Engines514
10.5 Fuel Spray Behavior517
10.5.1 Fuel Injection517
10.5.2 Overall Spray Structure522
10.5.3 Atomization525
10.5.4 Spray Penetration529
10.5.5 Droplet Size Distribution532
10.5.6 Spray Evaporation535
10.6 Ignition Delay539
10.6.1 Definition and Discussion539
10.6.2 Fuel Ignition Quality541
10.6.3 Autoignition Fundamentals542
10.6.4 Physical Factors Affecting Delay546
10.6.5 Effect of Fuel Properties550
10.6.6 Correlations for Ignition Delay in Engines553
10.7 Mixing-Controlled Combustion555
10.7.1 Background555
10.7.2 Spray and Flame Structure555
10.7.3 Fuel-Air Mixing and Burning Rates558
Chapter 11 Pollutant Formation and Control567
11.1 Nature and Extent of Problem567
11.2 Nitrogen Oxides572
11.2.1 Kinetics of NO Formation572
11.2.2 Formation of NO2577
11.2.3 NO Formation in Spark-Ignition Engines578
11.2.4 NOx Formation in Compression-Ignition Engines586
11.3 Carbon Monoxide592
11.4 Unburned Hydrocarbon Emissions596
11.4.1 Background596
11.4.2 Flame Quenching and Oxidation Fundamentals599
11.4.3 HC Emissions from Spark-Ignition Engines601
11.4.4 Hydrocarbon Emission Mechanisms in Diesel Engines620
11.5 Particulate Emissions626
11.5.1 Spark-Ignition Engine Particulates626
11.5.2 Characteristics of Diesel Particulates626
11.5.3 Particulate Distribution within the Cylinder631
11.5.4 Soot Formation Fundamentals635
11.5.5 Soot Oxidation642
11.5.6 Adsorption and Condensation646
11.6 Exhaust Gas Treatment648
11.6.1 Available Options648
11.6.2 Catalytic Converters649
11.6.3 Thermal Reactors657
11.6.4 Particulate Traps659
Chapter 12 Engine Heat Transfer668
12.1 Importance of Heat Transfer668
12.2 Modes of Heat Transfer670
12.2.1 Conduction670
12.2.2 Convection670
12.2.3 Radiation671
12.2.4 Overall Heat-Transfer Process671
12.3 Heat Transfer and Engine Energy Balance673
12.4 Convective Heat Transfer676
12.4.1 Dimensional Analysis676
12.4.2 Correlations for Time-Averaged Heat Flux677
12.4.3 Correlations for Instantaneous Spatial Average Coefficients678
12.4.4 Correlations for Instantaneous Local Coefficients681
12.4.5 Intake and Exhaust System Heat Transfer682
12.5 Radiative Heat Transfer683
12.5.1 Radiation from Gases683
12.5.2 Flame Radiation684
12.5.3 Prediction Formulas688
12.6 Measurements of Instantaneous Heat-Transfer Rates689
12.6.1 Measurement Methods689
12.6.2 Spark-Ignition Engine Measurements690
12.6.3 Diesel Engine Measurements692
12.6.4 Evaluation of Heat-Transfer Correlations694
12.6.5 Boundary-Layer Behavior697
12.7 Thermal Loading and Component Temperatures698
12.7.1 Component Temperature Distributions698
12.7.2 Effect of Engine Variables701
Chapter 13 Eng ne Friction and Lubrication712
13.1 Background712
13.2 Definitions714
13.3 Friction Fundamentals715
13.3.1 Lubricated Friction715
13.3.2 Turbulent Dissipation719
13.3.3 Total Friction719
13.4 Measurement Methods719
13.5 Engine Friction Data722
13.5.1 SI Engines722
13.5.2 Diesel Engines724
13.6 Engine Friction Components725
13.6.1 Motored Engine Breakdown Tests725
13.6.2 Pumping Friction726
13.6.3 Piston Assembly Friction729
13.6.4 Crankshaft Bearing Friction734
13.6.5 Valve Train Friction737
13.7 Accessory Power Requirements739
13.8 Lubrication740
13.8.1 Lubrication System740
13.8.2 Lubricant Requirements741
Chapter 14 Modeling Real Engine Flow and Combustion Processes748
14.1 Purpose and Classification of Models748
14.2 Governing Equations for Open Thermodynamic System750
14.2.1 Conservation of Mass750
14.2.2 Conservation of Energy751
14.3 Intake and Exhaust Flow Models753
14.3.1 Background753
14.3.2 Quasi-Steady Flow Models753
14.3.3 Filling and Emptying Methods754
14.3.4 Gas Dynamic Models756
14.4 Thermodynamic-Based In-Cylinder Models762
14.4.1 Background and Overall Model Structure762
14.4.2 Spark-Ignition Engine Models766
14.4.3 Direct-Injection Engine Models778
14.4.4 Prechamber Engine Models784
14.4.5 Multicylinder and Complex Engine System Models789
14.4.6 Second Law Analysis of Engine Processes792
14.5 Fluid-Mechanic-Based Multidimensional Models797
14.5.1 Basic Approach and Governing Equations797
14.5.2 Turbulence Models800
14.5.3 Numerical Methodology803
14.5.4 Flow Field Predictions807
14.5.5 Fuel Spray Modeling813
14.5.6 Combustion Modeling816
Chapter 15 Engine Operating Characteristics823
15.1 Engine Performance Parameters823
15.2 Indicated and Brake Power and MEP824
15.3 Operating Variables That Affect SI Engine Performance,Efficiency,and Emissions827
15.3.1 Spark Timing827
15.3.2 Mixture Composition829
15.3.3 Load and Speed839
15.3.4 Compression Ratio841
15.4 SI Engine Combustion Chamber Design844
15.4.1 Design Objectives and Options844
15.4.2 Factors That Control Combustion846
15.4.3 Factors That Control Performance850
15.4.4 Chamber Octane Requirement852
15.4.5 Chamber Optimization Strategy857
15.5 Variables That Affect CI Engine Performance,Efficiency,and Emissions858
15.5.1 Load and Speed858
15.5.2 Fuel-Injection Parameters863
15.5.3 Air Swirl and Bowl-in-Piston Design866
15.6 Supercharged and Turbocharged Engine Performance869
15.6.1 Four-Stroke Cycle SI Engines869
15.6.2 Four-Stroke Cycle CI Engines874
15.6.3 Two-Stroke Cycle SI Engines881
15.6.4 Two-Stroke Cycle CI Engines883
15.7 Engine Performance Summary886
Appendixes899
A Unit Conversion Factors899
B Ideal Gas Relationships902
B.1 Ideal Gas Law902
B.2 The Mole903
B.3 Thermodynamic Properties903
B.4 Mixtures of Ideal Gases905
C Equations for Fluid Flow through a Restriction906
C.1 Liquid Flow907
C.2 Gas Flow907
D Data on Working Fluids911
Index917