图书介绍
离散及组合数学 第5版 英文PDF|Epub|txt|kindle电子书版本网盘下载
- RalphP.Grimaldi著 著
- 出版社: 北京:科学出版社
- ISBN:9787030349569
- 出版时间:2012
- 标注页数:960页
- 文件大小:205MB
- 文件页数:977页
- 主题词:离散数学-英文;组合数学-英文
PDF下载
下载说明
离散及组合数学 第5版 英文PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
PART 1 Fundamentals of Discrete Mathematics1
1 Fundamental Principles of Counting3
1.1 The Rules of Sum and Product3
1.2 Permutations6
1.3 Combinations:The Binomial Theorem14
1.4 Combinations with Repetition26
1.5 The Catalan Numbers(Optional)36
1.6 Summary and Historical Review41
2 Fundamentals of Logic47
2.1 Basic Connectives and Truth Tables47
2.2 Logical Equivalence:The Laws of Logic55
2.3 Logical Implication:Rules of Inference67
2.4 The Use of Quantifiers86
2.5 Quantifiers,Definitions,and the Proofs of Theorems103
2.6 Summary and Historical Review117
3 Set Theory123
3.1 Sets and Subsets123
3.2 Set Operations and the Laws of Set Theory136
3.3 Counting and Vean Diagrams148
3.4 A First Word on Probability150
3.5 The Axioms of Probability(Optional)157
3.6 Conditional Probability:Independence(Optional)166
3.7 Discrete Random Variables(Optional)175
3.8 Summary and Historical Review186
4 Properties of the Integers:Mathematical Induction193
4.1 The Well-Ordering Principle:Mathematical Induction193
4.2 Recursive Definitions210
4.3 The Division Algorithm:Prime Numbers221
4.4 The Greatest Common Divisor:The Euclidean Algorithm231
4.5 The Fundamental Theorem of Arithmetic237
4.6 Summary and Historical Review242
5 Relations and Functions247
5.1 Cartesian Products and Relations248
5.2 Functions:Plain and One-to-One252
5.3 Onto Functions:Stirling Numbers of the Second Kind260
5.4 Special Functions267
5.5 The Pigeonhole Principle273
5.6 Function Composition and Inverse Functions278
5.7 Computational Complexity289
5.8 Analysis of Algorithms294
5.9 Summary and Historical Review302
6 Languages:Finite State Machines309
6.1 Language:The Set Theory of Strings309
6.2 Finite State Machines:A First Encounter319
6.3 Finite State Machines:A Second Encounter326
6.4 Summary and Historical Review332
7 Relations:The Second Time Around337
7.1 Relations Revisited:Properties of Relations337
7.2 Computer Recognition:Zero-One Matrices and Directed Graphs344
7.3 Partial Orders:Hasse Diagrams356
7.4 Equivalence Relations and Partitions366
7.5 Finite State Machines:The Minimization Process371
7.6 Summary and Historical Review376
PART 2 Further Topics in Enumeration383
8 The Principle of Inclusion and Exclusion385
8.1 The Principle of Inclusion and Exclusion385
8.2 Generalizations of the Principle397
8.3 Derangements:Nothing Is in Its Right Place402
8.4 Rook Polynomials404
8.5 Arrangements with Forbidden Positions406
8.6 Summary and Historical Review411
9 Generating Functions415
9.1 Introductory Examples415
9.2 Definition and Examples:Calculational Techniques418
9.3 Partitions of Integers432
9.4 The Exponential Generating Function436
9.5 The Summation Operator440
9.6 Summary and Historical Review442
10 Recurrence Relations447
10.1 The First-Order Linear Recurrence Relation447
10.2 The Second-Order Linear Homogeneous Recurrence Relation with Constant Coefficients456
10.3 The Nonhomogeneous Recurrence Relation470
10.4 The Method of Generating Functions482
10.5 A Special Kind of Nonlinear Recurrence Relation(Optional)487
10.6 Divide-and-Conquer Algorithms(Optional)496
10.6 Summary and Historical Review505
PART 3 Graph Theory and Applications511
11 An Introduction to Graph Theory513
11.1 Definitions and Examples513
11.2 Subgraphs,Complements,and Graph Isomorphism520
11.3 Vertex Degree:Euler Trails and Circuits530
11.4 Planar Graphs540
11.5 Hamilton Paths and Cycles556
11.6 Graph Coloring and Chromatic Polynomials564
11.7 Summary and Historical Review573
12 Trees581
12.1 Definitions,Properties,and Examples581
12.2 Rooted Trees587
12.3 Trees and Sorting605
12.4 Weighted Trees and Prefix Codes609
12.5 Biconnected Components and Articulation Points615
12.6 Summary and Historical Review622
13 Optimization and Matching631
13.1 Dijkstra's Shortest-Path Algorithm631
13.2 Minimal Spanning Trees:The Algorithms of Kruskal and Prim638
13.3 Transport Networks:The Max-Flow Min-Cut Theorem644
13.4 Matching Theory659
13.5 Summary and Historical Review667
PART 4 Modern Applied Algebra671
14 Rings and Modular Arithmetic673
14.1 The Ring Structure:Definition and Examples673
14.2 Ring Properties and Substructures679
14.3 The Integers Modulo n686
14.4 Ring Homomorphisms and Isomorphisms697
14.5 Summary and Historical Review705
15 Boolean Algebra and Switching Functions711
15.1 Switching Functions:Disjunctive and Conjunctive Normal Forms711
15.2 Gating Networks:Minimal Sums of Products:Karnaugh Maps719
15.3 Further Applications:Don't-Care Conditions729
15.4 The Structure of a Boolean Algebra(Optional)733
15.5 Summary and Historical Review742
16 Groups,Coding Theory,and Polya's Method of Enumeration745
16.1 Definition,Examples,and Elementary Properties745
16.2 Homomorphisms,Isomorphisms,and Cyclic Groups752
16.3 Cosets and Lagrange's Theorem757
16.4 The RSA Cryptosystem(Optional)759
16.5 Elements of Coding Theory761
16.6 The Hamming Metric766
16.7 The Parity-Check and Generator Matrices769
16.8 Group Codes:Decoding with Coset Leaders773
16.9 Hamming Matrices777
16.10 Counting and Equivalence:Burnside's Theorem779
16.11 The Cycle Index785
16.12 The Pattern Inventory:Polya's Method of Enumeration789
16.13 Summary and Historical Review794
17 Finite Fields and Combinatorial Designs799
17.1 Polynomial Rings799
17.2 Irreducible Polynomials:Finite Fields806
17.3 Latin Squares815
17.4 Finite Geometries and Affine Planes820
17.5 Block Designs and Projective Planes825
17.6 Summary and Historical Review830
Appendix 1 Exponential and Logarithmic Functions1
Appendix 2 Matrices,Matrix Operations,and Determinants11
Appendix 3 Countable and Uncountable Sets23
Solutions1