图书介绍
Mathematical StatisticsPDF|Epub|txt|kindle电子书版本网盘下载
![Mathematical Statistics](https://www.shukui.net/cover/57/34191950.jpg)
- 著
- 出版社: Inc.
- ISBN:
- 出版时间:1962
- 标注页数:390页
- 文件大小:126MB
- 文件页数:401页
- 主题词:
PDF下载
下载说明
Mathematical StatisticsPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter 1 INTRODUCTION1
1.1 Introduction1
1.2 Fundamental problems of probability3
1.3 Probabilities and sets4
Chapter 2 PROBABILITY—THE DISCRETE CASE7
2.1 Discrete sample spaces7
2.1.1 Subsets and events9
2.1.2 Operations on sets10
2.1.3 The algebra of sets13
2.2 Some combinatorial theory17
2.2.1 Permutations20
2.2.2 Combinations22
2.2.3 Binomial coefficients23
2.3 Probability32
2.3.1 The postulates of probability34
2.3.2 Some elementary theorems of probability36
2.4 Conditional probability43
2.5 Some further theorems of probability52
Chapter 3 PROBABILITY DISTRIBUTIONS61
3.1 Random variables61
3.2 Special probability distributions66
3.2.1 The binomial distribution66
3.2.2 The hypergeometric distribution70
3.2.3 The Poisson distribution72
3.2.4 Some applications78
3.3 Multivariate probability distributions81
3.3.1 The multinomial distribution85
Chapter 4 MATHEMATICAL EXPECTATION:DISCRETE RANDOM VARIABLES90
4.1 Mathematical expectation90
4.2 Moments94
4.2.1 Chebyshev's theorem96
4.3 Moments of special probability distributions99
4.3.1 Moments of the binomial distribution99
4.3.2 Moments of the hypergeometric distribution102
4.3.3 Moments of the Poisson distribution103
4.4 Moment generating functions106
4.4.1 The moment generating function of the binomial distribution108
4.4.2 The moment generating function of the Poisson distribution108
4.4.3 Moment generating functions and limiting distributions109
4.5 Product moments112
4.6 Mathematical expectation and decision making114
Chapter 5 PROBABILITY DENSITIES117
5.1 Introduction117
5.2 Probability densities and distribution functions117
5.3 Special probability densities125
5.3.1 The uniform distribution126
5.3.2 The exponential distribution126
5.3.3 The gamma distribution127
5.3.4 The normal distribution128
5.3.5 Some applications131
5.4 Change of variable132
5.5 Multivariate probability densities137
Chapter 6 MATHEMATICAL EXPECTATION:CONTINUOUS RANDOM VARIABLES143
6.1 Mathematical expectation143
6.2 Moments144
6.3 Moments of special probability densities145
6.3.1 Moments of the uniform distribution146
6.3.2 Moments of the gamma distribution146
6.3.3 Moments of the normal distribution147
6.4 Moment generating functions152
6.4.1 Some properties of moment generating functions153
6.4.2 Moment generating functions of special distributions154
6.4.3 Moment generating functions and limiting distributions157
6.5 Product moments160
6.6 Mathematical expectation and decision making161
Chapter 7 SUMS OF RANDOM VARIABLES164
7.1 Introduction164
7.2 Sums of random variables—convolutions166
7.3 Sums of random variables—moment generating functions171
7.4 Moments of linear combinations of random variables173
7.4.1 The distribution of the mean175
7.4.2 Differences between means and differences between proportions179
7.4.3 Sampling from finite populations181
7.4.4 The distribution of rank sums183
7.5 The central limit theorem185
Chapter 8 SAMPLING DISTRIBUTIONS189
8.1 Introduction189
8.2 Sampling from normal populations190
8.2.1 The distribution of X191
8.2.2 The chi-square distribution and the distribution of S2193
8.2.3 The F distribution199
8.2.4 The t distribution201
8.3 Sampling distributions of order statistics204
Chapter 9 POINT ESTIMATION209
9.1 Statistical inference and decision theory209
9.2 Point estimation and interval estimation214
9.3 Properties of point estimators215
9.3.1 Unbiased estimators215
9.3.2 Consistency217
9.3.3 Relative efficiency218
9.3.4 Sufficiency219
9.4 Methods of point estimation222
9.4.1 The method of moments222
9.4.2 The method of maximum likelihood223
Chapter 10 INTERVAL ESTIMATION227
10.1 Confidence intervals227
10.2 Confidence intervals for the mean230
10.3 Confidence intervals for proportions232
10.4 Confidence intervals for variances234
Chapter 11 TESTS OF HYPOTHESES:THEORY237
11.1 Introduction237
11.2 Simple hypotheses238
11.2.1 Type Ⅰ and Type Ⅱ errors239
11.2.2 The Neyman-Pearson lemma240
11.3 Composite hypotheses246
11.3.1 The power function of a test247
11.3.2 Likelihood ratio tests251
Chapter 12 TESTS OF HYPOTHESES:APPLICATIONS259
12.1 Introduction259
12.2 Tests concerning means261
12.2.1 One-sample tests concerning means262
12.2.2 Differences between means266
12.3 Tests concerning variances271
12.4 Tests based on count data274
12.4.1 Tests concerning proportions275
12.4.2 Differences among k proportions276
12.4.3 Contingency tables282
12.4.4 Tests of goodness of fit285
12.5 Nonparamentric tests289
12.5.1 The sign test289
12.5.2 Tests based on rank sums290
Chapter 13 REGRESSION AND CORRELATION295
13.1 The problem of regression295
13.2 Regression curves296
13.3 Linear regression299
13.4 The bivariate normal distribution303
13.4.1 Some sampling theory:correlation analysis308
13.4.2 Some sampling theory:regression analysis314
13.5 The method of least squares321
Chapter 14 INTRODUCTION TO ANALYSIS OF VARIANCE328
14.1 Introduction328
14.2 One-way analysis of variance331
14.3 Two-way analysis of variance338
14.4 Some further considerations349
APPENDIX SUMS AND PRODUCTS351
STATISTICAL TABLES353
ANSWERS372
INDEX385