图书介绍
高等数学 下 英文版PDF|Epub|txt|kindle电子书版本网盘下载
![高等数学 下 英文版](https://www.shukui.net/cover/2/34496370.jpg)
- 东南大学大学数学教研室编著 著
- 出版社: 南京:东南大学出版社
- ISBN:9787564154820
- 出版时间:2015
- 标注页数:325页
- 文件大小:37MB
- 文件页数:336页
- 主题词:高等数学-高等学校-教材-英文
PDF下载
下载说明
高等数学 下 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter 5 Infinite Series1
5.1 Infinite Series1
5.1.1 The Concept of Infinite Series1
5.1.2 Conditions for Convergence3
5.1.3 Properties of Series5
Exercise 5.18
5.2 Tests for Convergence of Positive Series9
Exercise 5.218
5.3 Alternating Series,Absolute Convergence,and Conditional Convergence19
5.3.1 Alternating Series19
5.3.2 Absolute Convergence and Conditional Convergence21
Exercise 5.323
5.4 Tests for Improper Integrals24
5.4.1 Tests for the Improper Integrals:Infinite Limits of Integration24
5.4.2 Tests for the Improper Integrals:Infinite Integrands26
5.4.3 The Gamma Function28
Exercise 5.430
5.5 Infinite Series of Functions31
5.5.1 General Definitions31
5.5.2 Uniform Convergence of Series32
5.5.3 Properties of Uniformly Convergent Functional Series34
Exercise 5.536
5.6 Power Series37
5.6.1 The Radius and Interval of Convergence37
5.6.2 Properties of Power Series41
5.6.3 Expanding Functions into Power Series45
Exercise 5.655
5.7 Fourier Series56
5.7.1 The Concept of Fourier Series56
5.7.2 Fourier Sine and Cosine Series62
5.7.3 Expanding Functions with Arbitrary Period65
Exercise 5.768
Review and Exercise69
Chapter 6 Vectors and Analytic Geometry in Space72
6.1 Vectors72
6.1.1 Vectors72
6.1.2 Linear Operations on Vectors73
6.1.3 Dot Products and Cross Product75
Exercise 6.179
6.2 Operations on Vectors in Cartesian Coordinates in Three Space80
6.2.1 Cartesian Coordinates in Three Space80
6.2.2 Operations on Vectors in Cartesian Coordinates84
Exercise 6.288
6.3 Planes and Lines in Space89
6.3.1 Equations for Plane89
6.3.2 Lines92
6.3.3 Some Problems Related to Lines and Planes95
Exercise 6.3100
6.4 Curves and Surfaces in Space101
6.4.1 Sphere and Cylinder101
6.4.2 Curves in Space103
6.4.3 Surfaces of Revolution105
6.4.4 Quadric Surfaces106
Exercise 6.4109
Exercise Review110
Chapter 7 Multivariable Functions and Partial Derivatives113
7.1 Functions of Several Variables113
Exercise 7.1116
7.2 Limits and Continuity116
Exercise 7.2120
7.3 Partial Derivative121
7.3.1 Partial Derivative121
7.3.2 Second Order Partial Derivatives123
Exercise 7.3126
7.4 Differentials128
Exercise 7.4132
7.5 Rules for Finding Partial Derivative133
7.5.1 The Chain Rule133
7.5.2 Implicit Differentiation137
Exercise 7.5140
7.6 Direction Derivatives,Gradient Vectors142
7.6.1 Direction Derivatives142
7.6.2 Gradient Vectors144
Exercise 7.6146
7.7 Geometric Applications of Differentiation of Functions of Several Variables147
7.7.1 Tangent Line and Normal Plan to a Curve147
7.7.2 Tangent Plane and Normal Line to a Surface149
Exercise 7.7152
7.8 Taylor Formula for Functions of Two Variables and Extreme Values153
7.8.1 Taylor Formula for Functions of Two Variables153
7.8.2 Extreme Values155
7.8.3 Absolute Maxima and Minima on Closed Bounded Regions160
7.8.4 Lagrange Multipliers161
Exercise 7.8164
Exercise Review166
Chapter 8 Multiple Integrals172
8.1 Concept and Properties of Multiple Integrals172
8.2 Evaluation of Double Integrals174
8.2.1 Double Integrals in Rectangular Coordinates174
8.2.2 Double Integrals in Polar Coordinates178
8.2.3 Substitutions in Double Integrals182
Exercise 8.2185
8.3 Evaluation of Triple Integrals188
8.3.1 Triple Integrals in Rectangular Coordinates188
8.3.2 Triple Integrals in Cylindrical and Spherical Coordinates192
Exercise 8.3196
8.4 Evaluation of Line Integral with Respect to Arc Length197
Exercise 8.4199
8.5 Evaluation of Surface Integrals with Respect to Area200
8.5.1 Surface Area200
8.5.2 Evaluation of Surface Integrals with Respect to Area202
Exercise 8.5204
8.6 Application for the Integrals205
Exercise 8.6208
Review and Exercise209
Chapter 9 Integration in Vectors Field213
9.1 Vector Fields213
Exercise 9.1215
9.2 Line Integrals of the Second Type216
9.2.1 The Concept and Properties of the Line Integrals of the Second Type216
9.2.2 Calculation218
9.2.3 The Relation between the Two Line Integrals221
Exercise 9.2221
9.3 Green Theorem in the Plane222
9.3.1 Green Theorem223
9.3.2 Path Independence for the Plane Case228
Exercise 9.3232
9.4 The Surface Integral for Flux234
9.4.1 Orientation234
9.4.2 The Conception of the Surface Integral for Flux235
9.4.3 Calculation237
9.4.4 The Relation between the Two Surface Integrals240
Exercise 9.4241
9.5 Gauss Divergence Theorem242
Exercise 9.5246
9.6 Stoke Theorem247
9.6.1 Stoke Theorem247
9.6.2 Path Independence in Three-space251
Exercise 9.6252
Review and Exercise252
Chapter 10 Complex Analysis255
10.1 Complex Numbers255
Exercise 10.1257
10.2 Complex Functions259
10.2.1 Complex Valued Functions259
10.2.2 Limits259
10.2.3 Continuity261
Exercise 10.2263
10.3 Differential Calculus of Complex Functions264
10.3.1 Derivatives264
10.3.2 Analytic Functions268
10.3.3 Elementary Functions272
Exercise 10.3276
10.4 Complex Integration279
10.4.1 Complex Integration279
10.4.2 Cauchy-Goursat Theorem and Deformation Theorem282
10.4.3 Cauchy Integral Formula and Cauchy Integral Formula for Derivatives289
Exercise 10.4292
10.5 Series Expansion of Complex Function295
10.5.1 Sequences of Functions296
10.5.2 Taylor Series297
10.5.3 Laurent Series299
Exercise 10.5304
10.6 Singularities and Residue307
10.6.1 Singularities and Poles307
10.6.2 Cauchy Residue Theorem311
10.6.3 Evaluation of Real Integrals316
Exercise 10.6320
Exercise Review323