图书介绍
数学分析 第2册 多元微积分PDF|Epub|txt|kindle电子书版本网盘下载
- 丁晓庆编著 著
- 出版社: 北京:清华大学出版社
- ISBN:9787302353201
- 出版时间:2014
- 标注页数:290页
- 文件大小:61MB
- 文件页数:298页
- 主题词:数学分析-高等学校-教材;微积分-高等学校-教材
PDF下载
下载说明
数学分析 第2册 多元微积分PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
第11章 常见点集的结构 点列的极限1
11.1平面点集的结构 二维空间R21
11.2空间点集的结构 三维空间R36
11.3 n维空间Rn n维空间点集的结构8
11.4点列的极限11
11.5闭集套定理 有限覆盖定理 聚点原理14
第12章 多元函数的极限和连续性16
12.1多元函数的概念16
12.2多元函数的极限19
12.3偏极限 累次极限换序的充分条件23
12.4累次极限的换序公式和换序准则25
12.5多元函数的连续性29
12.6多元向量值函数 场的概念31
12.7向量值函数的极限 连续 曲面的参数方程35
12.8向量值连续函数的性质39
第13章 多元函数的偏导数 微分41
13.1偏导数的概念41
13.2高阶偏导数43
13.3多元函数的微分46
13.4复合函数的求导法则 微分的形式不变性49
13.5微分中值定理Taylor公式54
第14章 向量值函数的微分 函数方程与隐函数58
14.1二元向量值函数的偏导向量 微分58
14.2 n元向量值函数的偏导向量 微分61
14.3开映射定理 局部逆映射定理65
14.4逆映射存在的充分条件 逆映射的性质75
14.5函数方程及其解函数概述 隐函数的概念81
14.6隐函数的微分84
14.7隐函数存在定理89
第15章 多元函数微分学的一些应用94
15.1曲面的切平面和法向量 曲线的切线94
15.2方向导数与梯度98
15.3多元函数的最值 极值Fermat原理100
15.4条件最值 条件极值Lagrange乘数法104
第16章 函数列的收敛性111
16.1函数列的极限概念111
16.2一致收敛性的判定117
16.3极限函数的极限 连续 微分120
16.4极限与定积分的换序 控制收敛定理123
16.5极限与广义积分的换序 单调收敛定理126
16.6控制收敛定理的证明128
第17章 函数项级数的一般理论Taylor级数Fourier级数131
17.1函数项级数的概念及其收敛性131
17.2函数项级数的极限 连续 微分135
17.3函数项级数的积分138
17.4分式级数 函数项无穷乘积140
17.5幂级数及其一般性质143
17.6 Taylor级数148
17.7 Fourier级数154
第18章 二元函数的偏极限与偏积分168
18.1二元函数的偏极限168
18.2狭义偏积分171
18.3广义偏积分的收敛性176
18.4广义偏积分的极限和连续性180
18.5广义偏积分的微分183
18.6“有限区间×无限区间”上累次积分的换序185
18.7“无限区间×无限区间”上累次积分的换序187
18.8 Beta函数Gamma函数190
18.9 Γ(s)的有限展开195
18.10 Fourier变换 正余弦变换196
第19章 曲线积分201
19.1第一型曲线积分201
19.2第二型曲线积分206
第20章 二重积分211
20.1二重积分的概念和性质211
20.2二重积分的计算215
20.3平面区域面积的求法220
20.4二重积分的变量替换227
20.5 Green公式230
20.6积分与路径无关的条件 原函数问题234
20.7曲面的面积237
第21章 曲面积分246
21.1第一型曲面积分246
21.2第二型曲面积分的概念249
21.3第二型曲面积分的计算255
21.4 Stokes公式 空间曲线积分与路径无关的条件258
第22章 三重积分 多重积分262
22.1三重积分的概念262
22.2直角坐标系下三重积分的计算264
22.3三重积分的变量替换266
22.4 Gauss公式271
22.5场论的基本概念274
22.6 n重积分277
22.7广义重积分 广义曲面积分280
参考文献288