图书介绍

应用微积分 上 第2版PDF|Epub|txt|kindle电子书版本网盘下载

应用微积分 上 第2版
  • 大连理工大学城市学院基础教学部组编 著
  • 出版社: 大连:大连理工大学出版社
  • ISBN:9787561180815
  • 出版时间:2013
  • 标注页数:244页
  • 文件大小:38MB
  • 文件页数:253页
  • 主题词:微积分-高等学校-教材

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

应用微积分 上 第2版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第1章 函数、极限与连续1

1.1函数1

1.1.1函数的概念1

1.1.2函数的几种常见性态4

1.1.3复合函数与反函数5

1.1.4初等函数与非初等函数7

习题1-18

1.2极限11

1.2.1极限概念引例11

1.2.2自变量趋于有限值时函数的极限12

1.2.3自变量趋于无穷大时函数的极限15

1.2.4数列的极限17

1.2.5无穷小与无穷大18

习题1-220

1.3极限的性质与运算20

1.3.1极限的几个性质20

1.3.2极限的四则运算法则21

1.3.3夹逼法则24

1.3.4复合运算法则26

习题1-328

1.4单调有界原理和无理数e29

1.4.1单调有界原理30

1.4.2极限lim x→∞(1+1/x)x=e31

1.4.3指数函数e x,对数函数In x33

习题1-433

1.5无穷小的比较33

1.5.1无穷小的阶34

1.5.2利用等价无穷小代换求极限36

习题1-537

1.6函数的连续性与间断点38

1.6.1函数的连续与间断38

1.6.2初等函数的连续性42

习题1-645

1.7闭区间上连续函数的性质46

1.7.1闭区间上连续函数的有界性与最值性质46

1.7.2闭区间上连续函数的介值性质47

习题1-749

1.8应用实例阅读49

复习题一55

习题参考答案与提示57

第2章 一元函数微分学及其应用59

2.1导数的概念59

2.1.1变化率问题举例59

2.1.2导数的概念61

2.1.3用定义求导数举例62

2.1.4导数的几何意义65

2.1.5函数可导性与连续性的关系65

2.1.6导数概念应用举例66

习题2-167

2.2求导法则69

2.2.1函数的和、差、积、商的求导法则69

2.2.2复合函数的求导法则71

2.2.3反函数的求导法则73

2.2.4一些特殊的求导法则75

习题2-279

2.3高阶导数与相关变化率81

2.3.1高阶导数81

2.3.2相关变化率84

习题2-385

2.4函数的微分与函数的局部线性逼近86

2.4.1微分的概念86

2.4.2微分公式与运算法则88

2.4.3微分的几何意义及简单应用90

习题2-492

2.5利用导数求极限——洛必达法则93

2.5.1 0/0型未定式的极限93

2.5.2 0/0型未定式的极限95

2.5.3其他类型未定式的极限95

习题2-597

2.6微分中值定理98

2.6.1罗尔定理98

2.6.2拉格朗日中值定理100

2.6.3柯西中值定理102

习题2-6103

2.7泰勒公式——用多项式逼近函数104

2.7.1泰勒多项式与泰勒公式104

2.7.2常用函数的麦克劳林公式107

习题2-7110

2.8利用导数研究函数的性态111

2.8.1函数的单调性111

2.8.2函数的极值113

2.8.3函数的最大值与最小值115

2.8.4曲线的凹凸性与拐点117

2.8.5曲线的渐近线,函数作图118

习题2-8120

2.9应用实例阅读122

复习题二126

习题参考答案与提示127

第3章 一元函数积分学及其应用133

3.1定积分的概念、性质、可积准则133

3.1.1定积分问题举例133

3.1.2定积分的概念135

3.1.3定积分的几何意义136

3.1.4可积准则137

3.1.5定积分的性质138

习题3-1141

3.2微积分基本定理141

3.2.1牛顿-莱布尼兹公式142

3.2.2原函数存在定理144

习题3-2146

3.3不定积分147

3.3.1不定积分的概念及性质147

3.3.2基本积分公式148

3.3.3积分法则149

习题3-3160

3.4定积分的计算162

3.4.1定积分的换元法162

3.4.2定积分的分部积分法165

习题3-4167

3.5定积分应用举例168

3.5.1总量的可加性与微元法168

3.5.2几何应用举例169

3.5.3物理、力学应用举例175

3.5.4函数的平均值178

习题3-5178

3.6反常积分180

3.6.1无穷区间上的反常积分180

3.6.2无界函数的反常积分183

习题3-6185

3.7应用实例阅读185

复习题三188

习题参考答案与提示190

第4章 微分方程195

4.1微分方程的基本概念195

习题4-1197

4.2某些简单微分方程的初等积分法198

4.2.1一阶可分离变量方程198

4.2.2一阶线性微分方程200

4.2.3利用变量代换求解微分方程202

4.2.4某些可降阶的高阶微分方程205

习题4-2206

4.3建立微分方程方法简介208

习题4-3212

4.4二阶线性微分方程213

4.4.1线性微分方程通解的结构213

4.4.2二阶常系数齐次线性微分方程的解法215

4.4.3二阶常系数非齐次线性微分方程的解法217

习题4-4220

4.5应用实例阅读221

复习题四229

习题参考答案与提示230

附录234

附录1基本初等函数234

附录2极坐标系与直角坐标系240

附录3几种常见曲线242

参考文献244

热门推荐