图书介绍
A Treatise On Universal AlgebraPDF|Epub|txt|kindle电子书版本网盘下载
![A Treatise On Universal Algebra](https://www.shukui.net/cover/52/31647170.jpg)
- 著
- 出版社: Hafner Publishing Company
- ISBN:
- 出版时间:1960
- 标注页数:586页
- 文件大小:171MB
- 文件页数:611页
- 主题词:
PDF下载
下载说明
A Treatise On Universal AlgebraPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
BOOK Ⅰ.PRINCIPLES OP ALGEBRAIC SYMBOLISM1
CHAPTER Ⅰ.ON THE NATURE OF A CALCULUS3
1.Signs3
2.Definition of a Calculus4
3.Equivalence5
4.Operations7
5.Substitutive Schemes8
6.Conventional Schemes9
7.Uninterpretable Forms10
CHAPTER Ⅱ.MANIFOLDS13
8.Manifolds13
9.Secondary Properties of Elements14
10.Definitions15
11.Special Manifolds16
CHAPTER Ⅲ.PRINCIPLES OF UNIVERSAL ALGEBRA18
12.Introductory18
13.Equivalence18
14.Principles of Addition19
15.Addition21
16.Principles of Subtraction22
17.The Null Element24
18.Steps25
19.Multiplication25
20.Orders of Algebraic Manifolds27
21.The Null Element28
22.Classification of Special Algebras29
Note32
BOOK Ⅱ.THE ALGEBRA OF SYMBOLIC LOGIC33
CHAPTER Ⅰ.THE ALGEBRA OF SYMBOLIC LOGIC35
23.Formal Laws35
24.Reciprocity between Addition and Multiplication37
25.Interpretation38
26.Elementary Propositions39
27.Classification41
28.Incident Regions42
CHAPTER Ⅱ.THE ALGEBRA OF SYMBOLIC LOGIC(continued)45
29.Development45
30.Elimination47
31.Solution of Equations with One Unknown55
32.On Limiting and Unlimiting Equations59
33.On the Fields of Expressions60
34.Solution of Equations with More than One Unknown65
35.Symmetrical Solution of Equations with Two Unknowns67
36.Johnson's Method73
37.Symmetrical Solution of Equations with Three Unknowns75
38.Subtraction and Division80
CHAPTER Ⅲ.EXISTENTIAL EXPRESSIONS83
39.Existential Expressions83
40.Umbral Letters86
41.Elimination89
42.Solutions of Existential Expressions with One Unknown91
43.Existential Expressions with Two Unknowns93
44.Equations and Existential Expressions with One Unknown94
45.Boole's General Problem96
46.Equations and Existential Propositions with Many Unknowns97
Note98
CHAPTER Ⅳ.APPLICATION TO LOGIC99
47.Propositions99
48.Exclusion of Nugatory Forms100
49.Syllogism101
50.Symbolic Equivalents of Syllogisms103
51.Generalization of Logic105
CHAPTER Ⅴ.PROPOSITIONAL INTERPRETATION107
52.Propositional Interpretation107
53.Equivalent Propositions108
54.Symbolic Representation of Complexes108
55.Identification with the Algebra of Symbolic Logic108
56.Existential Expressions111
57.Symbolism of the Traditional Propositions111
58.Primitive Predication112
59.Existential Symbols and Primitive Predication113
60.Propositions114
Historical Note115
BOOK Ⅲ.POSITIONAL MANIFOLDS117
CHAPTER Ⅰ.FUNDAMENTAL PROPOSITIONS119
61.Introductory119
62.Intensity119
63.Things representing Different Elements121
64.Fundamental Propositions122
65.Subregions125
66.Loci128
67.Surface Loci and Curve Loci130
Note131
CHAPTER Ⅱ.STRAIGHT LINES AND PLANES132
68.Introductory132
69.Anharmonic Ratio132
70.Homographic Ranges133
71.Linear Transformations133
72.Elementary Properties136
73.Reference-Figures138
74.Perspective139
75.Quadrangles142
CHAPTER Ⅲ.QUADRICS144
76.Introductory144
77.Elementary Properties144
78.Poles and Polars145
79.Generating Regions147
80.Conjugate Coordinates148
81.Quadriquadric Curve Loci151
82.Closed Quadrics153
83.Conical Quadric Surfaces155
84.Reciprocal Equations and Conical quadrics157
Note161
CHAPTER Ⅳ.INTENSITY162
85.Defining Equation of Intensity162
86.Locus of Zero Intensity163
87.Plane Locus of Zero Intensity164
88.Quadric Locus of Zero Intensity166
89.Antipodal Elements and Opposite Intensities166
90.The Intercept between Two Elements167
Note168
BOOK Ⅳ.CALCULUS OF EXTENSION169
CHAPTER Ⅰ.COMBINATORIAL MULTIPLICATION171
91.Introductory171
92.Invariant Equations of Condition172
93.Principles of Combinatorial Multiplication173
94.Derived Manifolds175
95.Extensive Magnitudes176
96.Simple and Compound Extensive Magnitudes177
97.Fundamental Propositions178
Note180
CHAPTER Ⅱ.REGRESSIVE MULTIPLICATION181
98.Progressive and Regressive Multiplication181
99.Supplements181
100.Definition of Regressive Multiplication183
101.Pure and Mixed Products184
102.Rule of the Middle Factor185
103.Extended Rule of the Middle Factor188
104.Regressive Multiplication independent of Reference-Elements190
105.Proposition191
106.Müller's Theorems192
107.Applications and Examples195
Note198
CHAPTER Ⅲ.SUPPLEMENTS199
108.Supplementary Regions199
109.Normal Systems of Points199
110.Extension of the Definition of Supplements201
111.Different kinds of Supplements202
112.Normal Points and Straight Lines202
113.Mutually normal Regions203
114.Self-normal Elements204
115.Self-normal Planes206
116.Complete Region of Three Dimensions206
117.Inner Multiplication207
118.Elementary Transformations208
119.Rule of the Middle Factor208
120.Important Formula208
121.Inner Multiplication of Normal Regions209
122.General Formula for Inner Multiplication209
123.Quadrics210
124.Plane-Equation of a Quadric212
CHAPTER Ⅳ.DESCRIPTIVE GEOMETRY214
125.Application to Descriptive Geometry214
126.Explanation of Procedure214
127.Illustration of Method215
128.von Staudt's Construction215
129.Grassmann's Constructions219
130.Projection224
CHAPTER Ⅴ.DESCRIPTIVE GEOMETRY OF CONICS AND CUBICS229
131.General Equation of a Conic229
132.Further Transformations231
133.Linear Construction of Cubics233
134.First Type of Linear Construction of the Cubic233
135.Linear Construction of Cubic through Nine arbitrary Points235
136.Second Type of Linear Construction of the Cubic238
137.Third Type of Linear Construction of the Cubic239
138.Fourth Type of Linear Construction of the Cubic244
139.Chasles' Construction246
CHAPTER Ⅵ.MATRICES248
140.Introductory248
141.Definition of a Matrix248
142.Sums and Products of Matrices250
143.Associated Determinant252
144.Null Spaces of Matrices252
145.Latent Points254
146.Semi-Latent Regions266
147.The Identical Equation256
148.The Latent Region of a Repeated Latent Root257
149.The First Species of Semi-Latent Regions258
150.The Higher Species of Semi-Latent Regions259
151.The Identical Equation261
152.The Vacuity of a Matrix261
153.Symmetrical Matrices262
154.Symmetrical Matrices and Supplements265
155.Skew Matrices267
BOOK Ⅴ.EXTENSIVE MANIFOLDS OF THREE DIMENSIONS271
CHAPTER Ⅰ.SYSTEMS OF FORCES273
156.Non-metrical Theory of Forces273
157.Recapitulation of Formulas274
158.Inner Multiplication275
159.Elementary Properties of a Single Force276
160.Elementary Properties of Systems of Forces276
161.Condition for a Single Force277
162.Conjugate Lines277
163.Null Lines,Planes and Points278
164.Properties of Null Lines279
165.Lines in Involution280
166.Reciprocal Systems281
167.Formula for Systems of Forces282
CHAPTER Ⅱ.GROUPS OF SYSTEMS OF FORCES284
168.Specifications of a Group284
169.Systems Reciprocal to Groups285
170.Common Null Lines and Director Forces286
171.Quintuple Groups286
172.Quadruple and Dual Groups287
173.Anharmonic Ratio of Systems290
174.Self-Supplementary Dual Groups292
175.Triple Groups295
176.Conjugate Sets of Systems in a Triple Group298
CHAPTER Ⅲ.INVARIANTS OF GROUPS300
177.Definition of an Invariant300
178.The Null Invariants of a Dual Group300
179.The Harmonic Invariants of a Dual Group301
180.Further Properties of Harmonic Invariants302
181.Formul? connected with Reciprocal Systems303
182.Systems Reciprocal to a Dual Group304
183.The Pole and Polar Invariants of a Triple Group305
184.Conjugate Sets of Systems and the Pole and Polar Invariants306
185.Interpretation of P(x) and P(X)307
186.Relations between Conjugate Sets of Systems308
187.The Conjugate Invariant of a Triple Group310
188.Transformations of G(p,p) and G(P,P)312
CHAPTER Ⅳ.MATRICES AND FORCES316
189.Linear Transformations in Three Dimensions316
190.Enumeration of Typos of Latent and Semi-Latent Regions317
191.Matrices and Forces322
192.Latent Systems and Semi-Latent Groups323
193.Enumeration of Types of Latent Systems and Semi-Latent Groups326
194.Transformation of a Quadric into itself338
195.Direct Transformation of Quadrics339
196.Skew Transformation of Quadrics342
Note346
BOOK Ⅵ.THEORY OF METRICS347
CHAPTER Ⅰ.THEORY OF DISTANCE349
197.Axioms of Distance349
198.Congruent Ranges of Points350
199.Cayley's Theory of Distance351
200.Klein's Theorem353
201.Comparison with the Axioms of Distance354
202.Spatial Manifolds of Many Dimensions354
203.Division of Space355
204.Elliptic Space356
205.Polar Form356
206.Length of Intercepts in Polar Form358
207.Antipodal Form361
208.Hyperbolic Space362
209.The Space Constant363
210.Law of Intensity in Elliptic and Hyperbolic Geometry364
211.Distances of Planes and of Subregions365
212.Parabolic Geometry367
213.Law of Intensity in Parabolic Geometry368
Historical Note369
CHAPTER Ⅱ.ELLIPTIC GEOMETRY371
214.Introductory371
215.Triangles371
216.Further Formulae for Triangles374
217.Points inside a Triangle375
218.Oval Quadrics376
219.Further Properties of Triangles378
220.Planes One-sided379
221.Angles between Planes382
222.Stereometrical Triangles382
223.Perpendiculars383
224.Shortest Distances from Points to Planes385
225.Common Perpendicular of Planes386
226.Distances from Points to Subregions387
227.Shortest Distances between Subregions388
228.Spheres391
229.Parallel Subregions397
CHAPTER Ⅲ.EXTENSIVE MANIFOLDS AND ELLIPTIC GEOMETRY399
230.Intensities of Forces399
231.Relations between Two Forces400
232.Axes of a System of Forces401
233.Non-Axal Systems of Forces404
234.Parallel Lines404
235.Vector Systems406
236.Vector Systems and Parallel Lines407
237.Further Properties of Parallel Lines409
238.Planes and Parallel Lines411
CHAPTER Ⅳ.HYPERBOLIC GEOMETRY414
239.Space and Anti-Space414
240.Intensities of Points and Planes415
241.Distances of Points416
242.Distances of Planes417
243.Spatial and Anti-spatial Lines418
244.Distances of Subregions419
246.Geometrical Signification420
246.Poles and Polars420
247.Points on the Absolute422
248.Triangles422
249.Properties of Angles of a Spatial Triangle424
250.Stereometrical Triangles425
251.Perpendiculars426
252.The Feet of Perpendiculars427
253.Distance between Planes428
254.Shortest Distances429
255.Shortest Distances between Subregions430
256.Rectangular Rectilinear Figures433
257.Parallel Lines436
258.Parallel Planes439
CHAPTER Ⅴ.HYPERBOLIC GEOMETRY(continued)441
259.The Sphere441
260.Intersection of Spheres444
261.Limit-Surfaces447
262.Great Circles on Spheres448
263.Surfaces of Equal Distance from Subregions451
264.Intensities of Forces452
265.Relations between Two Spatial Forces452
266.Central Axis of a System of Forces454
267.Non-Axal Systems of Forces455
CHAPTER Ⅵ.KINEMATICS IN THREE DIMENSIONS456
268.Congruent Transformations456
269.Elementary Formulae458
270.Simple Geometrical Properties459
271.Translations and Rotations460
272.Locus of Points of Equal Displacement462
273.Equivalent Sets of Congruent Transformations463
274.Commutative Law464
275.Small Displacements464
276.Small Translations and Rotations465
277.Associated System of Forces466
278.Properties deduced from the Associated System467
279.Work468
280.Characteristic Lines470
281.Elliptic Space470
282.Surfaces of Equal Displacement472
283.Vector Transformations472
284.Associated Vector Systems of Forces473
285.Successive Vector Transformations473
286.Small Displacements476
CHAPTER Ⅶ.CURVES AND SURFACES478
287.Curve Lines478
288.Curvature and Torsion479
289.Planar Formul?481
290.Velocity and Acceleration482
291.The Circle484
292.Motion of a Rigid Body487
293.Gauss' Curvilinear Coordinates488
294.Curvature of Surfaces489
295.Lines of Curvature490
296.Meunier's Theorem493
297.Normals493
298.Curvilinear Coordinates494
299.Limit-Surfaces494
CHAPTER Ⅷ.TRANSITION TO PARABOLIC GEOMETRY496
300.Parabolic Geometry496
301.Plane Equation of the Absolute496
302.Intensities498
303.Congruent Transformations500
BOOK Ⅶ.APPLICATION OF THE CALCULUS OF EXTENSION TO GEOMETRY503
CHAPTER Ⅰ.VECTORS505
304.Introductory505
305.Points at Infinity506
306.Vectors507
307.Linear Elements508
308.Vector Areas509
309.Vector Areas as Carriers511
310.Planar Elements512
311.Vector Volumes513
312.Vector Volumes as Carriers513
313.Product of Four Points514
314.Point and Vector Factors514
315.Interpretation of Formulae515
316.Vector Formul?516
317.Operation of Taking the Vector516
318.Theory of Forces518
319.Graphic Statics520
Note522
CHAPTER Ⅱ.VECTORS(continued)523
320.Supplements523
321.Rectangular Normal Systems524
322.Imaginary Self-Normal Sphere524
323.Real Self-Normal Sphere525
324.Geometrical Formul?526
325.Taking the Flux527
326.Flux Multiplication528
327.Geometrical Formul?529
328.The Central Axis529
329.Planes containing the Central Axis530
330.Dual Groups of Systems of Forces530
331.Invariants of a Dual Group531
332.Secondary Axes of a Dual Group531
333.The Cylindroid532
334.The Harmonic Invariants533
335.Triple Groups533
336.The Pole and Polar Invariants534
337.Equation of the Associated Quadric535
338.Normals535
339.Small Displacements of a Rigid Body536
340.Work537
CHAPTER Ⅲ.CURVES AND SURFACES539
341.Curves539
342.Osculating Plane and Normals540
343.Acceleration540
344.Simplified Formul?541
345.Spherical Curvature541
346.Locus of Centre of Curvature542
347.Gauss' Curvilinear Co-ordinates543
348.Curvature544
349.Lines of Curvature545
350.Dupin's Theorem546
351.Eider's Theorem547
352.Meunier's Theorem547
Note547
CHAPTER Ⅳ.PURE VECTOR FORMUL?548
353.Introductory548
354.Lengths and Areas549
355.Formul?549
356.The Origin550
357.New Convention550
358.System of Forces551
359.Kinematics551
360.A Continuously Distributed Substance552
361.Hamilton's Differential Operator554
362.Conventions and Formulas555
363.Polar Co-ordinates557
364.Cylindrical Co-ordinates558
365.Orthogonal Curvilinear Co-ordinates560
366.Volume,Surface,and Line Integrals562
367.The Equations of Hydrodynamics562
368.Moving Origin563
369.Transformations of Hydrodynamical Equations565
370.Vector Potential of Velocity565
371.Curl Filaments of Constant Strength567
372.Carried Functions569
373.Clebsch's Transformations570
374.Flow of a Vector572
Note573
Note on Grassmann573
Index576