图书介绍
CONTRIBUTIONS TO THE THEORY OF RIEMANN SURFACESPDF|Epub|txt|kindle电子书版本网盘下载
- 著
- 出版社:
- ISBN:
- 出版时间:1953
- 标注页数:264页
- 文件大小:9MB
- 文件页数:268页
- 主题词:
PDF下载
下载说明
CONTRIBUTIONS TO THE THEORY OF RIEMANN SURFACESPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1.Developments of the Theory of Conformal Mapping and Riemann Surfaces Through a Century&By Lars V.Ahlfors3
2.Variational Methods in the Theory of Riemann Surfaces&By Menahem Schiffer15
3.Semigroups of Transformations of a Riemann Surface into Itself&By Paul C.Rosenbloom31
4.An Extremal Boundary Problem&By A.C.Schaeffer41
5.On Dirichlet's Principle&By Max Shiffman49
6.A Problem Concerning the Continuation of Riemann Surfaces&By Maurice Heins55
7.Construction of Functions with Prescribed Properties on Riemann Surfaces&By Leo Sario63
8.Metric Riemann Surfaces&By Eugenio Calabi77
9.Some Results Related to Extremal Length&By James A.Jenkins87
10.Random Walk and the Type Problem of Riemann Surfaces&By Shizuo Kakutani95
11.Construction of Parabolic Riemann Surfaces by the General Reflection Principle&By Wilfred Kaplan103
12.On the Ideal Boundary of a Riemann Surface&By H.L.Royden107
13.Topological Methods on Riemann Surfaces Pseudoharmonic Functions&By Marston Morse and James A.Jenkins111
14.Coverings of Riemann Surfaces&By Leonce Foures141
15.Partial Differential Equations and Pseudo-Analytic Functions on Riemann Surfaces&By Lipman Bers157
16.Dirichlet's Principle and Some Inequalities in the Theory of Conformal Mapping&By Zeev Nehari167
17.On the Effective Determination of Conformal Maps&By S.E.Warschawski177
18.Structure of Complex Spaces&By S.Bochner189
19.Real and Complex Operators on Manifolds&By D.C.Spencer203
20.Multivalued Solutions of Linear Partial Differential Equations&By S.Bergman229
21.The Theorem of Riemann-Roch for Adjoint Systems on Kahlerian Varieties&By K.Kodaira247