图书介绍
Elements of Information Theory Second EditionPDF|Epub|txt|kindle电子书版本网盘下载
- Thomas M.Cover 著
- 出版社: Wiley-Interscience
- ISBN:0471241954
- 出版时间:2006
- 标注页数:748页
- 文件大小:54MB
- 文件页数:770页
- 主题词:
PDF下载
下载说明
Elements of Information Theory Second EditionPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Introduction and Preview1
1.1 Preview of the Book5
2 Entropy,Relative Entropy,and Mutual Information13
2.1 Entropy13
2.2 Joint Entropy and Conditional Entropy16
2.3 Relative Entropy and Mutual Information19
2.4 Relationship Between Entropy and Mutual Information20
2.5 Chain Rules for Entropy,Relative Entropy,and Mutual Information22
2.6 Jensen’s Inequality and Its Consequences25
2.7 Log Sum Inequality and Its Applications30
2.8 Data-Processing Inequality34
2.9 Sufficient Statistics35
2.10 Fano’s Inequality37
Summary41
Problems43
Historical Notes54
3 Asymptotic Equipartition Property57
3.1 Asymptotic Equipartition Property Theorem58
3.2 Consequences of the AEP:Data Compression60
3.3 High-Probability Sets and the Typical Set62
Summary64
Problems64
Historical Notes69
4 Entropy Rates of a Stochastic Process71
4.1 Markov Chains71
4.2 Entropy Rate74
4.3 Example:Entropy Rate of a Random Walk on a Weighted Graph78
4.4 Second Law of Thermodynamics81
4.5 Functions of Markov Chains84
Summary87
Problems88
Historical Notes100
5 Data Compression103
5.1 Examples of Codes103
5.2 Kraft Inequality107
5.3 Optimal Codes l110
5.4 Bounds on the Optimal Code Length112
5.5 Kraft Inequality for Uniquely Decodable Codes115
5.6 Huffman Codes118
5.7 Some Comments on Huffman Codes120
5.8 Optimality of Huffman Codes123
5.9 Shannon -Fano-Elias Coding127
5.10 Competitive Optimality of the Shannon Code130
5.11 Generation of Discrete Distributions from Fair Coins134
Summary141
Problems142
Historical Notes157
6 Gambling and Data Compression159
6.1 The Horse Race159
6.2 Gambling and Side Information164
6.3 Dependent Horse Races and Entropy Rate166
6.4 The Entropy of English168
6.5 Data Compression and Gambling171
6.6 Gambling Estimate of the Entropy of English173
Summary175
Problems176
Historical Notes182
7 Channel Capacity183
7.1 Examples of Channel Capacity184
7.1.1 Noiseless Binary Channel184
7.1.2 Noisy Channel with Nonoverlapping Outputs185
7.1.3 Noisy Typewriter186
7.1.4 Binary Symmetric Channel187
7.1.5 Binary Erasure Channel188
7.2 Symmetric Channels189
7.3 Properties of Channel Capacity191
7.4 Preview of the Channel Coding Theorem191
7.5 Definitions192
7.6 Jointly Typical Sequences195
7.7 Channel Coding Theorem199
7.8 Zero-Error Codes205
7.9 Fano’s Inequality and the Converse to the Coding Theorem206
7.10 Equality in the Converse to the Channel Coding Theorem208
7.11 Hamming Codes210
7.12 Feedback Capacity216
7.13 Source-Channel Separation Theorem218
Summary222
Problems223
Historical Notes240
8 Differential Entropy243
8.1 Definitions243
8.2 AEP for Continuous Random Variables245
8.3 Relation of Differential Entropy to Discrete Entropy247
8.4 Joint and Conditional Differential Entropy249
8.5 Relative Entropy and Mutual Information250
8.6 Properties of Differential Entropy,Relative Entropy,and Mutual Information252
Summary256
Problems256
Historical Notes259
9 Gaussian Channel261
9.1 Gaussian Channel:Definitions263
9.2 Converse to the Coding Theorem for Gaussian Channels268
9.3 Bandlimited Channels270
9.4 Parallel Gaussian Channels274
9.5 Channels with Colored Gaussian Noise277
9.6 Gaussian Channels with Feedback280
Summary289
Problems290
Historical Notes299
10 Rate Distortion Theory301
10.1 Quantization301
10.2 Definitions303
10.3 Calculation of the Rate Distortion Function307
10.3.1 Binary Source307
10.3.2 Gaussian Source310
10.3.3 Simultaneous Description of Independent Gaussian Random Variables312
10.4 Converse to the Rate Distortion Theorem315
10.5 Achievability of the Rate Distortion Function318
10.6 Strongly Typical Sequences and Rate Distortion325
10.7 Characterization of the Rate Distortion Function329
10.8 Computation of Channel Capacity and the Rate Distortion Function332
Summary335
Problems336
Historical Notes345
11 Information Theory and Statistics347
11.1 Method of Types347
11.2 Law of Large Numbers355
11.3 Universal Source Coding357
11.4 Large Deviation Theory360
11.5 Examples of Sanov’s Theorem364
11.6 Conditional Limit Theorem366
11.7 Hypothesis Testing375
11.8 Chernoff-Stein Lemma380
11.9 Chernoff Information384
11.10 Fisher Information and the Cramer-Rao Inequality392
Summary397
Problems399
Historical Notes408
12 Maximum Entropy409
12.1 Maximum Entropy Distributions409
12.2 Examples411
12.3 Anomalous Maximum Entropy Problem413
12.4 Spectrum Estimation415
12.5 Entropy Rates of a Gaussian Process416
12.6 Burg’s Maximum Entropy Theorem417
Summary420
Problems421
Historical Notes425
13 Universal Source Coding427
13.1 Universal Codes and Channel Capacity428
13.2 Universal Coding for Binary Sequences433
13.3 Arithmetic Coding436
13.4 Lempel-Ziv Coding440
13.4.1 Sliding Window Lempel-Ziv Algorithm441
13.4.2 Tree-Structured Lempel-Ziv Algorithms442
13.5 Optimality of Lempel-Ziv Algorithms443
13.5.1 Sliding Window Lempel-Ziv Algorithms443
13.5.2 Optimality of Tree-Structured Lempel-Ziv Compression448
Summary456
Problems457
Historical Notes461
14 Kolmogorov Complexity463
14.1 Models of Computation464
14.2 Kolmogorov Complexity:Definitions and Examples466
14.3 Kolmogorov Complexity and Entropy473
14.4 Kolmogorov Complexity of Integers475
14.5 Algorithmically Random and Incompressible Sequences476
14.6 Universal Probability480
14.7 Kolmogorov complexity482
14.8 Ω484
14.9 Universal Gambling487
14.10 Occam’s Razor488
14.11 Kolmogorov Complexity and Universal Probability490
14.12 Kolmogorov Sufficient Statistic496
14.13 Minimum Description Length Principle500
Summary501
Problems503
Historical Notes507
15 Network Information Theory509
15.1 Gaussian Multiple-User Channels513
15.1.1 Single-User Gaussian Channel513
15.1.2 Gaussian Multiple-Access Channel with m Users514
15.1.3 Gaussian Broadcast Channel515
15.1.4 Gaussian Relay Channel516
15.1.5 Gaussian Interference Channel518
15.1.6 Gaussian Two-Way Channel519
15.2 Jointly Typical Sequences520
15.3 Multiple-Access Channel524
15.3.1 Achievability of the Capacity Region for the Multiple-Access Channel530
15.3.2 Comments on the Capacity Region for the Multiple-Access Channel532
15.3.3 Convexity of the Capacity Region of the Multiple-Access Channel534
15.3.4 Converse for the Multiple-Access Channel538
15.3.5 m-User Multiple-Access Channels543
15.3.6 Gaussian Multiple-Access Channels544
15.4 Encoding of Correlated Sources549
15.4.1 Achievability of the Slepian-Wolf Theorem551
15.4.2 Converse for the Slepian-Wolf Theorem555
15.4.3 Slepian-Wolf Theorem for Many Sources556
15.4.4 Interpretation of Slepian-Wolf Coding557
15.5 Duality Between Slepian-Wolf Encoding and Multiple-Access Channels558
15.6 Broadcast Channel560
15.6.1 Definitions for a Broadcast Channel563
15.6.2 Degraded Broadcast Channels564
15.6.3 Capacity Region for the Degraded Broadcast Channel565
15.7 Relay Channel571
15.8 Source Coding with Side Information575
15.9 Rate Distortion with Side Information580
15.10 General Multiterminal Networks587
Summary594
Problems596
Historical Notes609
16 Information Theory and Portfolio Theory613
16.1 The Stock Market:Some Definitions613
16.2 Kuhn-Tucker Characterization of the Log-Optimal Portfolio617
16.3 Asymptotic Optimality of the Log-Optimal Portfolio619
16.4 Side Information and the Growth Rate621
16.5 Investment in Stationary Markets623
16.6 Competitive Optimality of the Log-Optimal Portfolio627
16.7 Universal Portfolios629
16.7.1 Finite-Horizon Universal Portfolios631
16.7.2 Horizon-Free Universal Portfolios638
16.8 Shannon-McMillan-Breiman Theorem(General AEP)644
Summary650
Problems652
Historical Notes655
17 Inequalities in Information Theory657
17.1 Basic Inequalities of Information Theory657
17.2 Differential Entropy660
17.3 Bounds on Entropy and Relative Entropy663
17.4 Inequalities for Types665
17.5 Combinatorial Bounds on Entropy666
17.6 Entropy Rates of Subsets667
17.7 Entropy and Fisher Information671
17.8 Entropy Power Inequality and Brunn-Minkowski Inequality674
17.9 Inequalities for Determinants679
17.10 Inequalities for Ratios of Determinants683
Summary686
Problems686
Historical Notes687
Bibliography689
List of Symbols723
Index727