图书介绍

数学分析 第1册PDF|Epub|txt|kindle电子书版本网盘下载

数学分析 第1册
  • 周民强编著 著
  • 出版社: 上海:上海科学技术出版社
  • ISBN:7532364933
  • 出版时间:2002
  • 标注页数:366页
  • 文件大小:8MB
  • 文件页数:377页
  • 主题词:数学分析

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

数学分析 第1册PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

绪论1

1 微积分起源简介1

2 微积分在应用方面的成就举例(18世纪)2

3 微积分的名称来源3

第一章 函数5

1 变量5

2 函数概念8

2.1 函数的定义8

2.2 构成函数的各种途径10

3 函数图形的整体特征分类简介19

4 初等函数27

注记29

第二章 极限论35

1 实数连续性公理简介35

2 有界数集与确界38

2.1 有界数集38

2.2 有界数集的确界40

3 数列极限43

3.1 数列及其极限命题的提出43

3.2 数列的极限概念45

3.3 收敛数列的性质51

3.4 数列及其子列59

3.5 单调有界数列的极限61

4 实数连续统的基本定理68

4.1 闭区间套序列、有限子覆盖68

4.2 聚点原理与Cauchy收敛准则72

5 数列的上极限、下极限79

5.1 数列的上、下极限概念79

5.2 数列上、下极限的运算公式83

6 函数极限90

6.1 函数的有界性概念90

6.2 函数的极限概念93

6.3 函数极限的基本性质98

6.4 两个典型极限106

6.5 判别函数极限存在的Cauchy准则108

7 无穷大量、渐近线112

7.1 无穷大连续变量112

7.2 渐近线114

7.3 无穷大整序变量117

8 无穷大(小)量的量阶表示118

8.1 符号“O”与“o”的意义119

8.2 渐近相等121

注记128

第三章 连续函数140

1 函数的连续性141

1.1 函数在一点连续的概念141

1.2 函数在一点左、右连续的概念144

1.3 函数在连续点处的局部性质146

2 多个函数连续性之间的运算关系,初等函数的连续性147

3 函数间断点的分类153

4 闭区间上连续函数的重要性质155

4.1 有界性、最值性155

4.2 介值(中值)性159

4.3 一致连续性162

注记168

第四章 微分学(一):导数与微分174

1 函数的导数概念174

1.1 即时速度与切线斜率174

1.2 导数的定义及其记法177

1.3 左、右导数的概念181

1.4 函数的可导性与连续性184

1.5 导数与变化率188

2 求导运算法则190

2.1 四则运算190

2.2 复合函数与反函数的求导公式193

2.3 参数式函数与隐函数的导数200

3 微分204

3.1 微分概念与微分公式204

3.2 复合函数微分法与微分的形式不变性208

4 高阶导数与高阶微分210

4.1 y=f(x)的高阶导数210

4.2 其他定式函数的高阶导数217

4.3 高阶微分220

5 描述光滑曲线的几何量222

5.1 两曲线之间的交角222

5.2 弧长的微分224

5.3 曲线的曲率225

注记230

第五章 微分学(二):微分中值定理与Taylor公式237

1 微分中值定理237

1.1 Rolle定理237

1.2 Lagrange中值公式240

1.3 Cauchy中值公式246

2 L Hopital法则——求“不定型”的极限248

2.1 不定型248

2.2 不定型251

2.3 其他不定型253

3 函数的极值,导函数的性质256

3.1 函数的极值256

3.2 导函数的性质264

4 判别函数的凹凸性,求曲线的拐点,曲线作图268

4.1 判别函数的凹凸性268

4.2 求曲线的拐点273

4.3 曲线作图法276

5 Taylor公式280

5.1 Peano余项的Taylor公式及其应用280

5.2 Lagrange余项的Taylor公式及其应用294

注记302

第六章 微分的逆运算——不定积分315

1 原函数与不定积分316

1.1 原函数与不定积分的概念316

1.2 部分初等函数的积分表320

2 积分法法则323

2.1 不定积分运算的线性性质323

2.2 换元积分法326

2.3 分部积分法333

2.4 递推公式338

3 原函数是初等函数的几类函数积分法340

3.1 有理分式(部分分式法)341

3.2 无理函数346

3.3 三角(超越)函数357

注记360

热门推荐