图书介绍

discrete mathematics:elementary and beyodnPDF|Epub|txt|kindle电子书版本网盘下载

discrete mathematics:elementary and beyodn
  • 出版社:
  • ISBN:
  • 出版时间:未知
  • 标注页数:0页
  • 文件大小:14MB
  • 文件页数:304页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

discrete mathematics:elementary and beyodnPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Let’s Count!1

1.1 A Party1

1.2 Sets and the Like4

1.3 The Number of Subsets9

1.4 The Approximate Number of Subsets14

1.5 Sequences15

1.6 Permutations17

1.7 The Number of Ordered Subsets19

1.8 The Number of Subsets of a Given Size20

2 Combinatorial Tools25

2.1 Induction25

2.2 Comparing and Estimating Numbers30

2.3 Inclusion-Exclusion32

2.4 Pigeonholes34

2.5 The Twin Paradox and the Good Old Logarithm37

3 Binomial Coefficients and Pascal’s Triangle43

3.1 The Binomial Theorem43

3.2 Distributing Presents45

3.3 Anagrams46

3.4 Distributing Money48

3.5 Pascals Triangle49

3.6 Identities in Pascals Triangle50

3.7 A Birds-Eyc View of Pascals Triangle54

3.8 An Eagles-Eye View: Fine Details57

4 Fibonacci Numbers65

4.1 Fibonaccis Exercise65

4.2 Lots of Identities68

4.3 A Forinula for the Fibonacci Nurnbers71

5 Combinatorial Probability77

5.1 Events and Probabilities77

5.2 Independent Repetition of an Experiment79

5.3 The Law of Large Numbers80

5.4 The Law of Small Numbers and the Law of Very Large Nuun-bers83

6 Integers, Divisors, and Primes87

6.1 Divisibility of Integers87

6.2 Primes and Their History88

6.3 Factorization into Primes90

6.4 On the Set of Primes93

6.5 Fermat’s“Littlc” Theorem97

6.6 The Euclidean Algorithm99

6.7 Congrucnccs105

6.8 Strange Numbers107

6.9 Nnnnber Theory and Conmbinatorics114

6.10 How to Tcst Whether a Number is a Prime?117

7 Graphs125

7.1 Even and Odd Degrees125

7.2 Paths, Cycles, and Connectivity130

7.3 Eulerian Walks and Hamiltonian Cycles135

8 Trees141

8.1 How to Define Trees141

8.2 How to Grow Trees143

8.3 How to Count Trees?146

8.4 How to Store Trees148

8.5 The Number of Unlabeled Trees153

9 Finding the Optimum157

9.1 Finding the Best Tree157

9.2 The Traveling Salesman Problem161

10 Matchings in Graphs165

10.1 A Dancing Problem165

10.2 Another matching problem167

10.3 The Main Theorem169

10.4 How to Find a Perfect Matching171

11 Combinatorics in Geometry179

11.1 Intersections of Diagonals179

11.2 Counting regions181

11.3 Convex Polygons184

12 Euler’s Formula189

12.1 A Planet Under Attack189

12.2 Planar Graphs192

12.3 Eulers Formula for Polyhedra194

13 Coloring Maps and Graphs197

13.1 Coloring Regions with Two Colors197

13.2 Coloring Graphs with Two Colors199

13.3 Coloring graphs with many colors202

13.4 Mlap Coloring and the Four Color Theorem204

14 Finite Geometries, Codes,Latin Squares,and Other Pretty Creatures211

14.1 Small Exotic Worlds211

14.2 Finite Affine and Projective Planes217

14.3 Block Designs220

14.4 Steiner Systems224

14.5 Latin Squares229

14.6 Codes232

15 A Glimpse of Complexity and Cryptography239

15.1 A Connecticut Class in King Arthur’s Court239

15.2 Classical Cryptography242

15.3 How to Save the Last Move in Chess244

15.4 How to Verify a Password—Without Learning it246

15.5 How to Find These Primes246

15.6 Public Key Cryptography247

16 Answers to Exercises251

Index287

热门推荐