图书介绍

分析 2PDF|Epub|txt|kindle电子书版本网盘下载

分析 2
  • (法)RogerGodement著 著
  • 出版社: 北京:高等教育出版社
  • ISBN:9787040279542
  • 出版时间:2009
  • 标注页数:444页
  • 文件大小:20MB
  • 文件页数:452页
  • 主题词:分析(数学)-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

分析 2PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Ⅴ-Differential and Integral Calculus1

1.The Riemann Integral1

1-Upper and lower integrals of a bounded function1

2-Elementary properties of integrals5

3-Riemann sums.The integral notation14

4-Uniform limits of integrable functions16

5-Application to Fourier series and to power series21

2.Integrability Conditions26

6-The Borel-Lebesgue Theorem26

7-Integrability of regulated or continuous functions29

8-Uniform continuity and its consequences31

9-Differentiation and integration under the ∫ sign36

10-Semicontinuous functions41

11-Integration of semicontinuous functions48

3.The"Fundamental Theorem"(FT)52

12-The fundamental theorem of the differential and integral calculus52

13-Extension of the fundamental theorem to regulated func-tions59

14-Convex functions;H?lder and Minkowski inequalities65

4.Integration by parts74

15-Integration by parts74

16-The square wave Fourier series77

17-Wallis'formula80

5.Taylor's Formula82

18-Taylor's Formula82

6.The change of variable formula91

19-Change of variable in an integral91

20-Integration of rational fractions95

7.Generalised Riemann integrals102

21-Convergent integrals:examples and definitions102

22-Absolutely convergent integrals104

23-Passage to the limit under the ∫ sign109

24-Series and integrals115

25-Differentiation under the ∫ sign118

26-Integration under the ∫ sign124

8.Approximation Theorems129

27-How to make C∞ a function which is not129

28-Approximation by polynomials135

29-Functions having given derivatives at a point138

9.Radon measures in R or C141

30-Radon measures on a compact set141

31-Measures on a locally compact set150

32-The Stieltjes construction157

33-Application to double integrals164

10.Schwartz distributions168

34-Definition and examples168

35-Derivatives of a distribution173

Appendix to Chapter Ⅴ-Introduction to the Lebesgue Theory179

Ⅵ-Asymptotic Analysis195

1.Truncated expansions195

1-Comparison relations195

2-Rules of calculation197

3-Truncated expansions198

4-Truncated expansion of a quotient200

5-Gauss'convergence criterion202

6-The hypergeometric series204

7-Asymptotic study of the equation xex=t206

8-Asymptotics of the roots of sin x log x=1208

9-Kepler's equation210

10-Asymptotics of the Bessel functions213

2.Summation formulae224

11-Cavalieri and the sums 1k+2k+...+nk224

12-Jakob Bernoulli226

13-The power series for cot z231

14-Euler and the power series for arctanx234

15-Euler,Maclaurin and their summation formula238

16-The Euler-Maclaurin formula with remainder239

17-Calculating an integral by the trapezoidal rule241

18-The sum 1+1/2+...+1/n,the infinite product for the Γ function,and Stirling's formula242

19-Analytic continuation of the zeta function247

Ⅶ-Harmonic Analysis and Holomorphic Functions251

1-Cauchy's integral formula for a circle251

1.Analysis on the unit circle255

2-Functions and measures on the unit circle255

3-Fourier coefficients261

4-Convolution product on T266

5-Dirac sequences in T270

2.Elementary theorems on Fourier series274

6-Absolutely convergent Fourier series274

7-Hilbertian calculations275

8-The Parseval-Bessel equality277

9-Fourier series of difierentiable functions283

10-Distributions on T287

3.Dirichlet's method295

11-Dirichlet's theorem295

12-Fejér's theorem301

13-Uniformly convergent Fourier series303

4.Analytic and holomorphic functions307

14-Analyticity of the holomorphic functions308

15-The maximum principle310

16-Functions analytic in an annulus.Singular points.Mero-morphic functions313

17-Periodic holomorphic functions319

18-The theorems of Liouville and of d'Alembert-Gauss320

19-Limits of holomorphic functions330

20-Infinite products of holomorphic functions332

5.Harmonic functions and Fourier series340

21-Analytic functions defined by a Cauchy integral340

22-Poisson's function342

23-Applications to Fourier series344

24-Harmonic functions347

25-Limits of harmonic functions351

26-The Dirichlet problem for a disc354

6.From Fourier series to integrals357

27-The Poisson summation formula357

28-Jacobi's theta function361

29-Fundamental formulae for the Fourier transform365

30-Extensions of the inversion formula369

31-The Fourier transform and differentiation374

32-Tempered distributions378

Postface.Science,technology,arms387

Index436

Table of Contents of Volume Ⅰ441

热门推荐