图书介绍
分析 2PDF|Epub|txt|kindle电子书版本网盘下载
![分析 2](https://www.shukui.net/cover/1/30235774.jpg)
- (法)RogerGodement著 著
- 出版社: 北京:高等教育出版社
- ISBN:9787040279542
- 出版时间:2009
- 标注页数:444页
- 文件大小:20MB
- 文件页数:452页
- 主题词:分析(数学)-英文
PDF下载
下载说明
分析 2PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Ⅴ-Differential and Integral Calculus1
1.The Riemann Integral1
1-Upper and lower integrals of a bounded function1
2-Elementary properties of integrals5
3-Riemann sums.The integral notation14
4-Uniform limits of integrable functions16
5-Application to Fourier series and to power series21
2.Integrability Conditions26
6-The Borel-Lebesgue Theorem26
7-Integrability of regulated or continuous functions29
8-Uniform continuity and its consequences31
9-Differentiation and integration under the ∫ sign36
10-Semicontinuous functions41
11-Integration of semicontinuous functions48
3.The"Fundamental Theorem"(FT)52
12-The fundamental theorem of the differential and integral calculus52
13-Extension of the fundamental theorem to regulated func-tions59
14-Convex functions;H?lder and Minkowski inequalities65
4.Integration by parts74
15-Integration by parts74
16-The square wave Fourier series77
17-Wallis'formula80
5.Taylor's Formula82
18-Taylor's Formula82
6.The change of variable formula91
19-Change of variable in an integral91
20-Integration of rational fractions95
7.Generalised Riemann integrals102
21-Convergent integrals:examples and definitions102
22-Absolutely convergent integrals104
23-Passage to the limit under the ∫ sign109
24-Series and integrals115
25-Differentiation under the ∫ sign118
26-Integration under the ∫ sign124
8.Approximation Theorems129
27-How to make C∞ a function which is not129
28-Approximation by polynomials135
29-Functions having given derivatives at a point138
9.Radon measures in R or C141
30-Radon measures on a compact set141
31-Measures on a locally compact set150
32-The Stieltjes construction157
33-Application to double integrals164
10.Schwartz distributions168
34-Definition and examples168
35-Derivatives of a distribution173
Appendix to Chapter Ⅴ-Introduction to the Lebesgue Theory179
Ⅵ-Asymptotic Analysis195
1.Truncated expansions195
1-Comparison relations195
2-Rules of calculation197
3-Truncated expansions198
4-Truncated expansion of a quotient200
5-Gauss'convergence criterion202
6-The hypergeometric series204
7-Asymptotic study of the equation xex=t206
8-Asymptotics of the roots of sin x log x=1208
9-Kepler's equation210
10-Asymptotics of the Bessel functions213
2.Summation formulae224
11-Cavalieri and the sums 1k+2k+...+nk224
12-Jakob Bernoulli226
13-The power series for cot z231
14-Euler and the power series for arctanx234
15-Euler,Maclaurin and their summation formula238
16-The Euler-Maclaurin formula with remainder239
17-Calculating an integral by the trapezoidal rule241
18-The sum 1+1/2+...+1/n,the infinite product for the Γ function,and Stirling's formula242
19-Analytic continuation of the zeta function247
Ⅶ-Harmonic Analysis and Holomorphic Functions251
1-Cauchy's integral formula for a circle251
1.Analysis on the unit circle255
2-Functions and measures on the unit circle255
3-Fourier coefficients261
4-Convolution product on T266
5-Dirac sequences in T270
2.Elementary theorems on Fourier series274
6-Absolutely convergent Fourier series274
7-Hilbertian calculations275
8-The Parseval-Bessel equality277
9-Fourier series of difierentiable functions283
10-Distributions on T287
3.Dirichlet's method295
11-Dirichlet's theorem295
12-Fejér's theorem301
13-Uniformly convergent Fourier series303
4.Analytic and holomorphic functions307
14-Analyticity of the holomorphic functions308
15-The maximum principle310
16-Functions analytic in an annulus.Singular points.Mero-morphic functions313
17-Periodic holomorphic functions319
18-The theorems of Liouville and of d'Alembert-Gauss320
19-Limits of holomorphic functions330
20-Infinite products of holomorphic functions332
5.Harmonic functions and Fourier series340
21-Analytic functions defined by a Cauchy integral340
22-Poisson's function342
23-Applications to Fourier series344
24-Harmonic functions347
25-Limits of harmonic functions351
26-The Dirichlet problem for a disc354
6.From Fourier series to integrals357
27-The Poisson summation formula357
28-Jacobi's theta function361
29-Fundamental formulae for the Fourier transform365
30-Extensions of the inversion formula369
31-The Fourier transform and differentiation374
32-Tempered distributions378
Postface.Science,technology,arms387
Index436
Table of Contents of Volume Ⅰ441