图书介绍

代数基本定理 英文PDF|Epub|txt|kindle电子书版本网盘下载

代数基本定理 英文
  • BenjaminFine,GerhardRosenberger编著 著
  • 出版社: 北京:清华大学出版社
  • ISBN:9787302214793
  • 出版时间:2009
  • 标注页数:210页
  • 文件大小:8MB
  • 文件页数:225页
  • 主题词:代数-高等学校-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

代数基本定理 英文PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Introduction and Historical Remarks1

2 Complex Numbers5

2.1 Fields and the Real Field5

2.2 The Complex Number Field10

2.3 Geometrical Representation of Complex Numbers12

2.4 Polar Form and Euler's Identity14

2.5 DeMoivre's Theorem for Powers and Roots17

Exercises19

3 Polynomials and Complex Polynomials21

3.1 The Ring of Polynomials over a Field21

3.2 Divisibility and Unique Factorization of Polynomials24

3.3 Roots of Polynomials and Factorization27

3.4 Real and Complex Polynomials29

3.5 The Fundamental Theorem of Algebra:Proof One31

3.6 Some Consequences of the Fundamental Theorem33

Exercises34

4 Complex Analysis and Analytic Functions36

4.1 Complex Functions and Analyticity36

4.2 The Cauchy-Riemann Equations41

4.3 Conformal Mappings and Analyticity46

Exercises49

5 Complex Integration and Cauchy's Theorem52

5.1 Line Integrals and Green's Theorem52

5.2 Complex Integration and Cauchy's Theorem61

5.3 The Cauchy Integral Formula and Cauchy's Estimate66

5.4 Liouville's Theorem and the Fundamental Theorem of Algebra:Proof Two70

5.5 Some Additional Results71

5.6 Concluding Remarks on Complex Analysis72

Exercises72

6 Fields and Field Extensions74

6.1 Algebraic Field Extensions74

6.2 Adjoining Roots to Fields81

6.3 Splitting Fields84

6.4 Permutations and Symmetric Polynomials86

6.5 The Fundamental Theorem of Algebra:Proof Three91

6.6 An Application—The Transcendence of e and π94

6.7 The Fundamental Theorem of Symmetric Polynomials99

Exercises102

7 Galois Theory104

7.1 Galois Theory Overview104

7.2 Some Results From Finite Group Theory105

7.3 Galois Extensions112

7.4 Automorphisms and the Galois Group115

7.5 The Fundamental Theorem of Galois Theory119

7.6 The Fundamental Theorem of Algebra:Proof Four123

7.7 Some Additional Applications of Galois Theory124

7.8 Algebraic Extensions of R and Concluding Remarks130

Exercises132

8 Topology and Topological Spaces134

8.1 Winding Number and Proof Five134

8.2 Topology—An Overview136

8.3 Continuity and Metric Spaces138

8.4 Topological Spaces and Homeomorphisms144

8.5 Some Further Properties of Topological Spaces146

Exercises149

9 Algebraic Topology and the Final Proof152

9.1 Algebraic Topology152

9.2 Some Further Group Theory—Abelian Groups154

9.3 Homotopy and the Fundamental Group159

9.4 Homology Theory and Triangulations166

9.5 Some Homology Computations173

9.6 Homology of Spheres and Brouwer Degree176

9.7 The Fundamental Theorem of Algebra:Proof Six178

9.8 Concluding Remarks180

Exercises180

Appendix A:A Version of Gauss's Original Proof182

Appendix B:Cauchy's Theorem Revisited187

Appendix C:Three Additional Complex Analytic Proofs of the Fundamental Theorem of Algebra195

Appendix D:Two More Topological Proofs of the Fundamental Theorem of Algebra199

Bibliography and References202

Index205

热门推荐