图书介绍

Limit Distributions For Sums of Independent Random VariablesPDF|Epub|txt|kindle电子书版本网盘下载

Limit Distributions For Sums of Independent Random Variables
  • B.V.Gnedenko and A.N.Kolmogorov 著
  • 出版社: Inc.
  • ISBN:
  • 出版时间:1954
  • 标注页数:264页
  • 文件大小:33MB
  • 文件页数:273页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

Limit Distributions For Sums of Independent Random VariablesPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

PREFACE1

PART Ⅰ.INTRODUCTION13

CHAPTER 1.PROBABILITY DISTRIBUTIONS.RANDOM VARIABLES AND MATHEMATICAL EXPECTATIONS13

1.Preliminary remarks13

2.Measures16

3.Perfect measures18

4.The Lebesgue integral19

5.Mathematical foundations of the theory of probability20

6.Probability distributions in R1 and in R?22

7.Independence.Composition of distributions26

8.The Stieltjes integral29

CHAPTER 2.DISTRIBUTIONS IN R1 AND THEIR CHARACTERISTIC FUNCTIONS32

9.Weak convergence of distributions32

10.Types of distributions39

11.The definition and the simplest properties of the characteristic function44

12.The inversion formula and the uniqueness theorem48

13.Continuity of the correspondence between distribution and characteristic functions52

14.Some special theorems about characteristic functions55

15.Moments and semi-invariants61

CHAPTER 3.INFINITELY DIVISIBLE DISTRIBUTIONS67

16.Statement of the problem.Random functions with independent increments67

17.Definition and basic properties71

18.The canonical representation76

19.Conditions for convergence of infinitely divisible distributions87

PART Ⅱ.GENERAL LIMIT THEOREMS94

CHAPTER 4.GENERAL LIMIT THEOREMS FOR SUMS OF INDEPENDENT SUMMANDS94

20.Statement of the problem.Sums of infinitely divisible summands94

21.Limit distributions with finite variances97

22.Law of large numbers105

23.Two auxiliary theorems109

24.The general form of the limit theorems.The accompanying infinitely divisible laws112

25.Necessary and sufficient conditions for convergence116

CHAPTER 5.CONVERGENCE TO NORMAL,POISSON,AND UNITARY DISTRIBUTIONS125

26.Conditions for convergence to normal and Poisson laws125

27.The law of large numbers133

28.Relative stability139

CHAPTER 6.LIMIT THEOREMS FOR CUMULATIVE SUMS145

29.Distributions of the class L145

30.Canonical representation of distributions of the class L149

31.Conditions for convergence152

32.Unimodality of distributions of the class L157

PART Ⅲ.IDENTICALLY DISTRIBUTED SUMMANDS162

CHAPTER 7.FUNDAMENTAL LIMIT THEOREMS162

33.Statement of the problem.Stable laws162

34.Canonical representation of stable laws164

35.Domains of attraction for stable laws171

36.Properties of stable laws182

37.Domains of partial attraction183

CHAPTER 8.IMPROVEMENT OF THEOREMS ABOUT THE CONVERGENCE TO THE NORMAL LAW191

38.Statement of the problem191

39.Two auxiliary theorems196

40.Estimation of the remainder term in Lyapunov's Theorem201

41.An auxiliary theorem204

42.Improvement of Lyapunov's Theorem for nonlattice distribution208

43.Deviation from the limit law in the case of a lattice distribution212

44.The extremal character of the Bernoulli case217

45.Improvement of Lyapunov's Theorem with higher moments for the continuous case220

46.Limit theorem for densities222

47.Improvement of the limit theorem for densities228

CHAPTER 9.LOCAL LIMIT THEOREMS FOR LATTICE DISTRIBUTIONS231

48.Statement of the problem231

49.A local theorem for the normal limit distribution232

50.A local limit theorem for non-normal stable limit distributions235

51.Improvement of the limit theorem in the case of convergence to the normal distribution240

APPENDIX I.NOTES ON CHAPTER 1245

APPENDIX II.NOTES ON 32252

BIBLIOGRAPHY257

INDEX262

热门推荐