图书介绍
Limit Distributions For Sums of Independent Random VariablesPDF|Epub|txt|kindle电子书版本网盘下载
![Limit Distributions For Sums of Independent Random Variables](https://www.shukui.net/cover/56/33335473.jpg)
- B.V.Gnedenko and A.N.Kolmogorov 著
- 出版社: Inc.
- ISBN:
- 出版时间:1954
- 标注页数:264页
- 文件大小:33MB
- 文件页数:273页
- 主题词:
PDF下载
下载说明
Limit Distributions For Sums of Independent Random VariablesPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
PREFACE1
PART Ⅰ.INTRODUCTION13
CHAPTER 1.PROBABILITY DISTRIBUTIONS.RANDOM VARIABLES AND MATHEMATICAL EXPECTATIONS13
1.Preliminary remarks13
2.Measures16
3.Perfect measures18
4.The Lebesgue integral19
5.Mathematical foundations of the theory of probability20
6.Probability distributions in R1 and in R?22
7.Independence.Composition of distributions26
8.The Stieltjes integral29
CHAPTER 2.DISTRIBUTIONS IN R1 AND THEIR CHARACTERISTIC FUNCTIONS32
9.Weak convergence of distributions32
10.Types of distributions39
11.The definition and the simplest properties of the characteristic function44
12.The inversion formula and the uniqueness theorem48
13.Continuity of the correspondence between distribution and characteristic functions52
14.Some special theorems about characteristic functions55
15.Moments and semi-invariants61
CHAPTER 3.INFINITELY DIVISIBLE DISTRIBUTIONS67
16.Statement of the problem.Random functions with independent increments67
17.Definition and basic properties71
18.The canonical representation76
19.Conditions for convergence of infinitely divisible distributions87
PART Ⅱ.GENERAL LIMIT THEOREMS94
CHAPTER 4.GENERAL LIMIT THEOREMS FOR SUMS OF INDEPENDENT SUMMANDS94
20.Statement of the problem.Sums of infinitely divisible summands94
21.Limit distributions with finite variances97
22.Law of large numbers105
23.Two auxiliary theorems109
24.The general form of the limit theorems.The accompanying infinitely divisible laws112
25.Necessary and sufficient conditions for convergence116
CHAPTER 5.CONVERGENCE TO NORMAL,POISSON,AND UNITARY DISTRIBUTIONS125
26.Conditions for convergence to normal and Poisson laws125
27.The law of large numbers133
28.Relative stability139
CHAPTER 6.LIMIT THEOREMS FOR CUMULATIVE SUMS145
29.Distributions of the class L145
30.Canonical representation of distributions of the class L149
31.Conditions for convergence152
32.Unimodality of distributions of the class L157
PART Ⅲ.IDENTICALLY DISTRIBUTED SUMMANDS162
CHAPTER 7.FUNDAMENTAL LIMIT THEOREMS162
33.Statement of the problem.Stable laws162
34.Canonical representation of stable laws164
35.Domains of attraction for stable laws171
36.Properties of stable laws182
37.Domains of partial attraction183
CHAPTER 8.IMPROVEMENT OF THEOREMS ABOUT THE CONVERGENCE TO THE NORMAL LAW191
38.Statement of the problem191
39.Two auxiliary theorems196
40.Estimation of the remainder term in Lyapunov's Theorem201
41.An auxiliary theorem204
42.Improvement of Lyapunov's Theorem for nonlattice distribution208
43.Deviation from the limit law in the case of a lattice distribution212
44.The extremal character of the Bernoulli case217
45.Improvement of Lyapunov's Theorem with higher moments for the continuous case220
46.Limit theorem for densities222
47.Improvement of the limit theorem for densities228
CHAPTER 9.LOCAL LIMIT THEOREMS FOR LATTICE DISTRIBUTIONS231
48.Statement of the problem231
49.A local theorem for the normal limit distribution232
50.A local limit theorem for non-normal stable limit distributions235
51.Improvement of the limit theorem in the case of convergence to the normal distribution240
APPENDIX I.NOTES ON CHAPTER 1245
APPENDIX II.NOTES ON 32252
BIBLIOGRAPHY257
INDEX262