图书介绍

微积分PDF|Epub|txt|kindle电子书版本网盘下载

微积分
  • 刘二根,盛梅波作 著
  • 出版社: 成都:西南交通大学出版社
  • ISBN:7564303239
  • 出版时间:2009
  • 标注页数:333页
  • 文件大小:9MB
  • 文件页数:342页
  • 主题词:微积分-高等学校-教材

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

微积分PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第一章 函数、极限与连续1

第一节 函数1

习题1-112

第二节 数列的极限14

习题1-219

第三节 函数的极限19

习题1-325

第四节 无穷小与无穷大25

习题1-429

第五节 极限运算法则29

习题1-533

第六节 极限存在准则与两个重要极限34

习题1-638

第七节 无穷小的比较39

习题1-741

第八节 函数的连续性与间断点41

习题1-845

第九节 连续函数的运算与性质45

习题1-950

复习题一50

第二章 导数与微分53

第一节 导数概念53

习题2-157

第二节 函数的求导法则58

习题2-264

第三节 高阶导数65

习题2-368

第四节 隐函数及由参数方程确定的函数的导数68

习题2-472

第五节 函数的微分72

习题2-578

复习题二79

第三章 中值定理与导数的应用81

第一节 中值定理81

习题3-187

第二节 洛必达法则87

习题3-293

第三节 函数的单调性93

习题3-395

第四节 函数的极值与最值96

习题3-4101

第五节 曲线的凹凸性与拐点101

习题3-5104

第六节 函数图形的描绘104

习题3-6107

第七节 边际分析与弹性分析108

习题3-7112

复习题三113

第四章 不定积分115

第一节 不定积分的概念与性质115

习题4-1119

第二节 换元积分法120

习题4-2126

第三节 分部积分法126

习题4-3130

第四节 有理函数的积分130

习题4-4134

复习题四135

第五章 定积分137

第一节 定积分的概念与性质137

习题5-1143

第二节 微积分基本公式144

习题5-2147

第三节 定积分的换元积分法148

习题5-3151

第四节 定积分的分部积分法152

习题5-4154

第五节 广义积分与Γ函数154

习题5-5160

复习题五160

第六章 定积分的应用163

第一节 元素法163

第二节 定积分在几何上的应用164

习题6-2169

第三节 定积分在经济中的应用170

习题6-3171

复习题六172

第七章 多元函数微分学174

第一节 空间解析几何简介174

习题7-1179

第二节 多元函数的基本概念179

习题7-2187

第三节 偏导数187

习题7-3192

第四节 全微分192

习题7-4195

第五节 多元复合函数的求导法则196

习题7-5201

第六节 隐函数的求导公式201

习题7-6203

第七节 多元函数的极值204

习题7-7209

复习题七209

第八章 二重积分211

第一节 二重积分的概念与性质211

习题8-1214

第二节 利用直角坐标计算二重积分215

习题8-2221

第三节 利用极坐标计算二重积分222

习题8-3226

复习题八226

第九章 无穷级数229

第一节 常数项级数的概念与性质229

习题9-1233

第二节 正项级数的审敛法234

习题9-2240

第三节 任意项级数的审敛法241

习题9-3243

第四节 幂级数243

习题9-4250

第五节 函数展开成幂级数250

习题9-5256

复习题九256

第十章 微分方程与差分方程259

第一节 微分方程的基本概念259

习题10-1261

第二节 可分离变量的微分方程与齐次方程261

习题10-2264

第三节 一阶线性微分方程与伯努利方程265

习题10-3268

第四节 二阶常系数齐次线性微分方程268

习题10-4272

第五节 二阶常系数非齐次线性微分方程272

习题10-5276

第六节 差分方程简介276

习题10-6285

复习题十286

附录一 基础知识288

附录二 Mathematica软件介绍与数学实验293

习题答案309

热门推荐