图书介绍

Polynomial Expansions of Analytic FunctionsPDF|Epub|txt|kindle电子书版本网盘下载

Polynomial Expansions of Analytic Functions
  • Ralph P.Boas and R.Creighton Buck 著
  • 出版社: Springer-Verlag
  • ISBN:
  • 出版时间:1958
  • 标注页数:77页
  • 文件大小:19MB
  • 文件页数:86页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

Polynomial Expansions of Analytic FunctionsPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter Ⅰ.Introduction1

1.Generalities1

2.Representation formulas with a kernel4

3.The method of kernel expansion10

4.Lidstone series13

5.A set of Laguerre polynomials16

6.Generalized Appell polynomials17

Chapter Ⅱ.Representation of entire functions21

7.General theory21

8.Multiple expansions24

9.Appell polynomials28

(ⅰ)Bernoulli polynomials and generalizations29

(ⅱ)A set of Laguerre polynomials31

(ⅲ)Hermite polynomials31

(ⅳ)Reversed Laguerre polynomials32

(ⅴ)Reversed Rainville polynomials32

10.Sheffer polynomials33

(ⅵ)General difference polynomials34

(ⅶ)Poisson-Charlier,Narumi and Boole polynomials37

(ⅷ)Mittag-Leffler polynomials38

(ⅸ)Abel interpolation series38

(ⅹ)Laguerre polynomials40

(ⅹⅰ)Angelescu polynomials41

(ⅹⅱ)Denisyuk polynomials41

(ⅹⅲ)Squared Hermite polynomials41

(ⅹⅳ)Adhoc polynomials41

(ⅹⅴ)Actuarial polynomials42

11.More general polynomials42

(ⅹⅵ)Special hypergeometric polynomials43

(ⅹⅶ)Reversed Bessel polynomials43

(ⅹⅷ)q-difference polynomials44

(ⅹⅸ)Reversed Hermite polynomials45

(ⅹⅹ)Rain ville polynomials46

12.Polynomials not in generalized Appell form46

Chapter Ⅲ.Representation of functions that are regular at the origin47

13.Integral representations47

14.Brenke polynomials51

(ⅰ)Polynomials generated by A(w)(1-zw)-λ52

(ⅱ)q-difference polynomials54

15.More general polynomials55

16.Polynomials generated by A(w)(1-zg(w))-λ57

(ⅲ)Taylor series57

(ⅳ)Lerch polynomials57

(ⅴ)Gegenbauer polynomials58

(ⅵ)Chebyshev polynomials58

(ⅶ)Humbert polymomials58

(ⅷ)Faber polynomials59

17.Special hypergeometric polynomials60

(ⅸ) Jacobi polynomials60

18.Polynomials not in generalized Appell form61

Chapter Ⅳ.Applications66

19.Uniqueness theorems66

20.Functional equations67

Bibliography71

Index75

热门推荐