图书介绍
Mechanical engineering designPDF|Epub|txt|kindle电子书版本网盘下载
- Joseph Edward Shigley ; Charles R. Mischke 著
- 出版社: McGraw-Hill
- ISBN:0071181865
- 出版时间:2001
- 标注页数:1251页
- 文件大小:534MB
- 文件页数:1277页
- 主题词:
PDF下载
下载说明
Mechanical engineering designPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Part 1 Basics1
1 Introduction3
1-1 Design5
1-2 Mechanical Engineering Design7
1-3 Your Path to Competence12
1-4 Technology Can Be Fragile12
1-5 Interaction between Design Process Elements14
1-6 Codes and Standards17
1-7 Economics18
1-8 Safety and Product Liability20
1-9 The Adequacy Assessment20
1-10 Uncertainty22
1-11 Stress and Strength26
1-12 Design Factors and Factors of Safety29
1-13 Reliability30
1-14 Numbers, Units, and Preferred Units31
Problems37
2 Addressing Uncertainty47
2-1 Questions Come with the Territory49
2-2 Estimating Statistical Parameters50
2-3 Probability Density Function and Cumulative Distribution Function53
2-4 Linear Regression55
2-5 Propagation of Error58
2-6 Simulation61
2-7 Design Factor and Factor of Safety63
2-8 Limits and Fits68
2-9 Dimensions and Tolerances71
2-10 Summary77
Problems79
3 Stress93
3-1 Stress Components94
3-2 Mohr Circles96
3-3 Triaxial Stress100
3-4 Uniformly Distributed Stress102
3-5 Elastic Strain103
3-6 Stress-Strain Relations104
3-7 Equilibrium104
3-8 Shear and Moment106
3-9 Singularity Functions108
3-10 Normal Stress in Flexure111
3-11 Beams with Asymmetrical Sections118
3-12 Shear Stresses in Beams118
3-13 Shear Stresses in Rectangular-Section Beams121
3-14 Torsion123
3-15 Stress Concentration129
3-16 Stresses in Cylinders132
3-17 Rotating Rings135
3-18 Press and Shrink Fits135
3-19 Temperature Effects137
3-20 Curved Members in Flexure138
3-21 Contact Stress144
3-22 Propagation of Error149
3-23 Summary154
Problems154
4 Deflection and Stiffness175
4-1 Spring Rates176
4-2 Tension, Compression, and Torsion177
4-3 Deflection Due to Bending178
4-4 Finding Deflection by Integration180
4-5 Finding Deflection by the Area-Moment Method187
4-6 Finding Deflection by the Use of Singularity Functions190
4-7 Strain Energy193
4-8 Castigliano’s Theorem195
4-9 Statistically Indeterminate Problems198
4-10 Deflection of Curved Members200
4-11 Compression Members—General204
4-12 Long Columns with Central Loading206
4-13 Intermediate-Length Columns with Central Loading210
4-14 Columns with Eccentric Loading210
4-15 Struts, or Short Compression Members214
4-16 An Application: Round-Bar Clamps216
4-17 Deflection of Energy-Dissipative Assemblies220
4-18 Shock and Impact229
4-19 Suddenly-Applied Loading230
4-20 Propagation of Error233
Problems237
Part 2 Failure Prevention253
5 Materials255
5-1 Static Strength256
5-2 Plastic Deformation261
5-3 Strength and Cold Work265
5-4 Hardness268
5-5 Impact Properties269
5-6 Temperature Effects271
5-7 Numbering Systems272
5-8 Sand Casting274
5-9 Shell Molding274
5-10 Investment Casting275
5-11 Powder-Metallurgy Process275
5-12 Hot-Working Processes275
5-13 Cold-Working Processes276
5-14 The Heat Treatment of Steel277
5-15 Alloy Steels279
5-16 Corrosion-Resistant Steels280
5-17 Casting Materials281
5-18 Nonferrous Metals283
5-19 Plastics285
5-20 Notch Sensitivity287
5-21 Introduction to Fracture Mechanics288
5-22 Stress-Corrosion Cracking303
5-23 Quantitative Estimation of Properties of Cold-Worked Metals303
5-24 Quantitative Estimation of Properties of Heat-Treated Steels307
Problems308
6 Failures Resulting from Static Loading315
6-1 Static Strength316
6-2 Stress Concentration319
6-3 Hypotheses of Failure322
6-4 Ductile Materials: Maximum-Shear-Stress (Tresca or Guest) Hypothesis324
6-5 Ductile Materials:Strain-Energy Hypotheses326
6-6 Ductile Materials:Internal-Friction Hypothesis332
6-7 Criticism of Hypotheses by Data in Ductile Materials334
6-8 Brittle Materials: Maximum-Normal-Stress (Rankine) Hypothesis335
6-9 Brittle Materials: Modifications of the Mohr Hypothesis337
6-10 The Criticism of Hypotheses by Data in Brittle Materials341
6-11 What Our Failure Models Tell Us342
6-12 Interference—General343
6-13 Static or Quasi-Static Loading on a Shaft347
Problems352
7 Failure Resulting from Variable Loading359
7-1 Introduction to Fatigue in Metals360
7-2 Strain-Life Relationships361
7-3 Stress-Life Relationships367
7-4 The Endurance Limit369
7-5 Fatigue Strength372
7-6 Endurance-Limit Modifying Factors374
7-7 Stress Concentration and Notch Sensitivity383
7-8 Applying What We Have Learned about Endurance Limit and Endurance Strength387
7-9 The Distributions395
7-10 Characterizing Fluctuating Stresses396
7-11 Failure Loci under Variable Stresses398
7-12 Torsional Fatigue Strength under Pulsating Stresses408
7-13 Combinations of Loading Modes408
7-14 Stochastic Failure Loci under Fluctuating Stresses411
7-15 Cumulative Fatigue Damage414
7-16 The Fracture-Mechanics Approach421
7-17 Surface Fatigue Strength423
7-18 The Designer’s Fatigue Diagram429
7-19 An Important Design Decision: The Design Factor in Fatigue431
Problems436
Summary of Parts 1 and 2441
Part 3 Design of Mechanical Elements443
8 Screws, Fasteners, and the Design of Nonpermanent Joints445
8-1 Thread Standards and Definitions446
8-2 The Mechanics of Power Screws450
8-3 Threaded Fasteners457
8-4 Joints—Fastener Stiffness458
8-5 Joints—Member Stiffness461
8-6 Bolt Strength466
8-7 Tension Joints—The External Load470
8-8 Relating Bolt Torque to Bolt Tension471
8-9 Statistically Loaded Tension Joint—Preload477
8-10 Gasketed Joints483
8-11 Tension Joints—Dynamic Loading484
8-12 Adequacy Assessment, Specification Set,Decision Set, and Design492
8-13 Shear Joints498
8-14 Setscrews504
8-15 Pins and Keys504
Problems513
9 Welding, Brazing, Bonding,and the Design of Permanent Joints527
9-1 Welding Symbols528
9-2 Butt and Fillet Welds530
9-3 Stresses in Welded Joints in Torsion535
9-4 Stresses in Welded Joints in Bending540
9-5 The Strength of Welded Joints542
9-6 Specification Set, Adequacy Assessment,and Decision Set544
9-7 Static Loading549
9-8 Fatigue Loading554
9-9 Resistance Welding557
9-10 Bolted and Riveted Joints Loaded in Shear558
9-11 Adhesive Bonding and Design Considerations562
Problems579
10 Mechanical Springs589
10-1 Stresses in Helical Springs590
10-2 The Curvature Effect591
10-3 Deflection of Helical Springs592
10-4 Extension Springs592
10-5 Compression Springs595
10-6 Stability596
10-7 Spring Materials598
10-8 Helical Compression Springs for Static Service609
10-9 Critical Frequency of Helical Springs620
10-10 Fatigue Loading622
10-11 Helical Compression Springs for Dynamic Service625
10-12 Design of a Helical Compression Spring for Dynamic Service629
10-13 Design of Extension Springs637
10-14 Designing Helical Coil Torsion Springs664
10-15 Belleville Springs678
10-16 Miscellaneous Springs678
10-17 Summary680
Problems683
11 Rolling-Contact Bearings689
11-1 Bearing Types690
11-2 Bearing Life693
11-3 Bearing Load-Life Trade-off at Constant Reliability694
11-4 Bearing Survival: The Reliability-Life Trade-off696
11-5 Load-Life-Reliability Trade-off697
11-6 Combined Radial and Thrust Loading699
11-7 Variable Loading704
11-8 Selection of Ball and Cylindrical Roller Bearings709
11-9 Selection of Tapered Roller Bearings714
11-10 Adequacy Assessment for Selected Rolling-Contact Bearings724
11-11 Lubrication728
11-12 Mounting and Enclosure729
Problems732
12 Lubrication and Journal Bearings739
12-1 Types of Lubrication741
12-2 Viscosity741
12-3 Petroff’s Equation744
12-4 Stable Lubrication750
12-5 Thick-Film Lubrication751
12-6 Hydrodynamic Theory752
12-7 Design Considerations757
12-8 The Relations of the Variables759
12-9 Steady-State Conditions in Self-Contained Bearings722
12-10 Clearance781
12-11 Pressure-Fed Bearings792
12-12 Loads and Materials803
12-13 Bearing Types805
12-14 Thrust Bearings806
12-15 Boundary-Lubricated Bearings807
Problems823
13 Gearing-General831
13-1 Types of Gears832
13-2 Nomenclature833
13-3 Tooth Systems835
13-4 Conjugate Action837
13-5 Involute Properties838
13-6 Fundamentals839
13-7 Contact Ratio844
13-8 Interference845
13-9 The Forming of Gear Teeth848
13-10 Straight Bevel Gears850
13-11 Parallel Helical Gears851
13-12 Worm Gears855
13-13 Gear Trains856
13-14 Force Analysis—Spur Gearing860
13-15 Force Analysis—Bevel Gearing863
13-16 Force Analysis—Helical Gearing866
13-17 Force Analysis—Worm Gearing869
13-18 Gear Ratios and Numbers of Teeth874
13-19 Gear-Shaft Speeds and Bearings878
Problems883
14 Spur and Helical Gears897
14-1 The Lewis Bending Equation898
14-2 Surface Durability907
14-3 AGMA Stress Equations909
14-4 AGMA Strength Equations910
14-5 Geometry Factors I and J (ZI and YI )915
14-6 Elastic Coefficient C p(Z E)920
14-7 Dynamic Factor K ’V920
14-8 Overload Factor K O922
14-9 Surface Condition Factors Cf and Z R922
14-10 Size Factor K s923
14-11 Load-Distribution Factor K m or K H923
14-12 Hardness-Ratio Factor C H924
14-13 Load Cycles Factors YN and Z N926
14-14 Reliability Factors KR and Y Z927
14-15 Temperature Factors KT and Y θ928
14-16 Rim-Thickness Factor KB928
14-17 Safety Factors SF and SH929
14-18 Analysis929
14-19 An Adequacy Assessment of a Gear Mesh940
14-20 Design of a Gear Mesh942
Problems947
15 Bevel and Worm Gears951
15-1 Bevel Gearing—General952
15-2 Bevel-Gear Stresses and Strengths954
15-3 AGMA Equation Factors957
15-4 Straight-Bevel Gear Analysis969
15-5 Design of a Straight-Bevel Gear Mesh972
15-6 Worm Gearing—AGMA Equation974
15-7 Worm-Gear Analysis978
15-8 Designing a Worm-Gear Mesh980
15-9 Buckingham Wear Load985
Problems986
16 Clutches, Brakes, Couplings, and Flywheels991
16-1 Rudiments of Brake Analysis993
16-2 Internal Expanding Rim Clutches and Brakes999
16-3 External Contracting Rim Clutches and Brakes1008
16-4 Band-Type Clutches and Brakes1011
16-5 Friction-Contact Axial Clutches1013
16-6 Disk Brakes1016
16-7 Cone Clutches and Brakes1022
16-8 Self-Locking Tapers and Torque Capacity1024
16-9 Energy Considerations1026
16-10 Temperature Rise1027
16-11 Friction Materials1031
16-12 Miscellaneous Clutches and Couplings1032
16-13 Flywheels1034
16-14 Adequacy Assessment for Clutches and Brakes1039
Problems1040
17 Flexible Mechanical Elements 104917-1 Belts1050
17-2 Flat- and Round-Belt Drives1053
17-3 V Belts1069
17-4 Timing Belts1077
17-5 Roller Chain1079
17-6 Wire Rope1088
17-7 Flexible Shafts1097
Problems 1098
18 Shafts and Axles1107
18-1 Introduction1108
18-2 Sufficing Geometric Constraints1111
18-3 Sufficing Strength Constraints1120
18-4 The Adequacy Assessment1128
18-5 Shaft Materials1134
18-6 Hollow Shafts1135
18-7 Critical Speeds1135
18-8 Shaft Design1141
18-9 Computer Considerations1142
Problems1146
Appendixes1153
A Statistical Relations1153
B Linear Regression1161
C Propagation of Error Relations1163
D Simulation1165
E Useful Tables1169
F Solutions to Selected Problems1231
Index1237