图书介绍

Fundamentals of engineering thermodynamicsPDF|Epub|txt|kindle电子书版本网盘下载

Fundamentals of engineering thermodynamics
  • John R.Howell Richard O.Buckius 著
  • 出版社:
  • ISBN:0079093698
  • 出版时间:未知
  • 标注页数:1033页
  • 文件大小:132MB
  • 文件页数:1060页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

Fundamentals of engineering thermodynamicsPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

CHAPTER 1 Introduction2

1.1 Energy and Society5

1.1.1 Value of Energy5

1.1.2 Need to Understand Energy and Its Forms5

1.2 Energy Balance Approach—Applications in Engineering6

1.3 Work and Heat Transfer9

1.4 Macroscopic versus Microscopic Viewpoint10

1.5 Problem Solving10

1.6 Units12

1.7 Scope of Text14

PROBLEMS15

REFERENCES17

CHAPTER 2 Energy and Energy Transfer18

2.1 Introduction21

2.2 Concepts and Definitions21

2.2.1 System and Surroundings21

2.2.2 System Description23

2.2.3 Equilibrium States and Quasi-Equilibrium Processes25

2.3 Some Common Properties26

2.3.1 Pressure P26

2.3.2 Specific Volume v28

2.3.3 Temperature T28

2.3.4 The Ideal Gas29

2.4 Energy31

2.5 Energy Transfer32

2.5.1 Work33

2.5.2 Heat Transfer49

2.5.3 Power50

2.6 Energy—What Is It?51

PROBLEMS52

REFERENCES 8o82

CHAPTER 3 Properties of Common Substances82

3.1 Introduction85

3.2 State Postulate—Applications to Property Relations85

3.3 Simple Compressible Substances87

3.3.1 Liquid Phases87

3.3.2 Saturation and Phases88

3.3.3 Quality89

3.3.4 Superheated Vapor91

3.3.5 P-v Diagram91

3.4 Other Thermodynamic Properties99

3.4.1 Internal Energy and Enthalpy99

3.4.2 Specific Heats100

3.5 Development of Property Data101

3.5.1 Graphical Data Presentation101

3.5.2 Equation of State102

3.5.3 Tabular Data117

3.5.4 Computerized Property Data Retrieval124

3.6 Remarks125

PROBLEMS126

REFERENCES138

CHAPTER 4 First Law of Thermodynamics140

4.1 Introduction143

4.2 Conservation Principles and the First Law of Thermodynamics143

4.2.1 Conservation of Mass144

4.2.2 First Law of Thermodynamics144

4.2.3 Generalized Control Mass Forms for Conservation of Mass and the First Law155

4.2.4 Other Conservation Relations156

4.3 Control Volume Formulation157

4.3.1 Conservation of Mass157

4.3.2 Conservation of Energy159

4.3.3 Generalized Control Volume Forms for Conservation of Mass and the First Law164

4.4 Control Volume Analysis167

4.4.1 Inlet and Outlet Considerations167

4.4.2 Considerations within the Control Volume169

4.4.3 Steady State Analysis171

4.4.4 Unsteady State Analysis171

4.5 Control Volume Applications173

4.5.1 Steady State Work Applications174

4.5.2 Magnitude of Various Terms in the First Law178

4.5.3 Steady State Flow Applications180

4.5.4 Unsteady State Work Applications184

4.5.5 Unsteady State Flow Applications186

4.6 Other Statements of the First Law190

PROBLEMS191

CHAPTER 5 Entropy and the Second Law of Thermodynamics246

5.1 Introduction249

5.1.1 Physical Observations249

5.1.2 Increasing Disorder by Heat Transfer252

5.2 Entropy and the Second Law for an lsolated System253

5.3 Reversible and lrreversible Processes255

5.4 Temperature and Pressure Definitions258

5.4.1 Temperature259

5.4.2 Pressure260

5.5 Entropy—The Property263

5.5.1 Entropy Relations265

5.5.2 Ideal Gas Relations267

5.5.3 Incompressible Fluid or Solid Relations270

5.6 Control Mass Formulation272

5.7 Classical Approach to the Second Law of Thermodynamics281

5.7.1 Cycles281

5.7.2 Reversible and Irreversible Processes283

5.7.3 Statements of the Second Law of Thermodynamics and Resultant Conclusions284

5.7.4 Thermodynamic Temperature Scale287

5.7.5 The Clausius Inequality287

5.7.6 Entropy288

5.8 Control Volume Formulation and Analysis290

5.8.1 Spatial and Time Variation Idealizations293

5.8.2 Applications294

5.9 Isentropic Process300

5.9.1 Isentropic Process for an Ideal Gas301

5.9.2 Isentropic Process for an Incompressible Fluid or Solid305

5.10 Special Considerations306

5.11 Component Efficiencies312

5.11.1 Turbine Efficiency312

5.11.2 Compressors and Pumps323

5.11.3 Nozzles327

5.11.4 Heat Exchangers334

5.11.5 Control Mass Efficiency335

5.12 Cyclic Processes and the Carnot Cycle336

5.13 Temperature Measurement341

5.14 Other Statements of the Second Law341

5.15 Summary343

PROBLEMS344

REFERENCES403

CHAPTER 6 Thermodynamic Cycle Analysis and Applications to Gas Cycles404

6.1 Introduction to Heat Engine Cycles407

6.1.1 Cycle Analysis Methodology408

6.1.2 Mean Effective Pressure410

6.1.3 Efficiency and Practicality413

6.2 Gas Cycle Analysis414

6.2.1 Air-Standard Cycles414

6.2.2 Effect of the Assumption of Temperature-Independent Specific Heats415

6.2.3 The Air-Standard Carnot Cycle416

6.3 Gas Cycle Heat Engines419

6.3.1 Stirling Cycle419

6.3.2 Ericsson Cycle422

6.3.3 Brayton Cycle (External Heat Transfer)425

6.4 Internal Combustion Cycles437

6.4.1 Brayton Cycle (Internal Combustion)437

6.4.2 Applications of the Brayton Cycle438

6.4.3 Air-Standard Otto Cycle443

6.4.4 Air-Standard Diesel Cycle448

6.4.5 Dual Cycle449

6.4.6 Other Gas Cycles454

6.5 Refrigeration, Air Conditioning, and Heat Pump Cycles461

6.5.1 Coefficient of Performance for Air Conditioners and Chillers461

6.5.2 Coefficient of Performance for Heat Pumps462

6.5.3 Gas Cooling Cycles Driven by Work Input462

6.5.4 Cooling Cycles Driven by Heat Transfer464

6.6 Concluding Remarks466

PROBLEMS467

CHAPTER 7 Vapor Cycle Analysis496

7.1 Vapor Cycle Analysis499

7.1.1 Vapor Cyele Heat Engines499

7.1.2 Vapor Cycle Cooling Devices and Heat Pumps500

7.2 Rankine Cycle500

7.2.1 Inefficiencies of Real Cycles507

7.2.2 Increasing the Rankine Cycle Efficiency509

7.2.3 Applications of the Rankine Cycle526

7.3 Other Vapor Heat Engine Cycles529

7.3.1 The Kalina Cycle529

7.3.2 Cogeneration and Combined-Cycle Plants531

7.4 Vapor Cooling and Heat Pump Cycles535

7.4.1 Vapor Compression Systems535

7.4.2 Vapor Cooling Cycles Driven by Heat Transfer539

7.5 Concluding Remarks541

PROBLEMS542

CHAPTER 8 Analysis Using the Second Law of Thermodynamics564

8.1 Introduction567

8.2 Reversible Work568

8.3 Availability573

8.4 Irreversibility578

8.5 Energy, Helmholtz Function, Gibbs Function581

8.6 General Process Comparisons582

8.7 Second Law Efficiencies590

8.7.1 Second Law Efficiency of Components That Produce Work or Require Work Input590

8.7.2 Second Law Efficiency of Other Components592

8.7.3 Second Law Efficiency of Heat Engine and Refrigeration Cycles594

8.8 Summary596

PROBLEMS597

REFERENCES605

CHAPTER 9 General Property Relations and Equations of State608

9.1 Introduction611

9.2 Relations among Properties611

9.2.1 Fundamental Equations and Maxwell's Relations611

9.2.2 Clapeyron Equation615

9.2.3 Generation of Property Tables616

9.3 Principle of Corresponding States620

9.3.1 Some Observations Based on van der Waals' Equation620

9.3.2 Expanded Use of the Principle of Corresponding States622

9.4 Some Other Properties631

9.4.1 Isothermal Compressibility632

9.4.2 Coefficient of Thermal Expansion632

9.4.3 Joule-Thomson Coefficient633

9.4.4 Specific Heats637

9.4.5 Fugacity638

9.5 Summary640

PROBLEMS640

REFERENCES646

CHAPTER 10 Multicomponent Systems without Chemical Reaction648

10.1 Introduction651

10.2 Multicomponent Measures651

10.3 Properties of a Multicomponent Ideal Gas653

10.4 Thermodynamic Analysis of Ideal Gas Mixtures660

10.4.1 Applications to Processes with Constant Composition662

10.4.2 Entropy Changes in the Mixing of Ideal Gases663

10.5 Multicomponent Analysis of Ideal Gas-Vapor Mixtures668

10.5.1 Measures and Properties669

10.5.2 Psychrometrics673

10.5.3 Thermodynamic Analysis675

10.6 Psychrometric Chart680

10.7 Applications681

10.7.1 Heat Transfer at Constant w681

10.7.2 Humidification682

10.7.3 Dehumidification683

10.7.4 Mixing of Air-Water Vapor Streams684

10.8 Nonideal Mixtures686

10.8.1 Mixtures of Nonideal Gases686

10.8.2 Other Mixture Rules687

10.9 General Mixture Relations688

10.9.1 Partial Molal Properties689

10.9.2 Property Changes during Mixing692

10.10 Summary692

PROBLEMS693

REFERENCES712

CHAPTER 11 Chemical Reactions and Combustion714

11.1 Introduction717

11.2 Chemical Reactions in Combustion Systems717

11.2.1 The General Case717

11.2.2 Combustion with Stoichiometric or Excess Air718

11.2.3 Air-Fuel and Equivalence Ratios722

11.3 Establishing a Common Basis for Combustion Processes722

11.3.1 Zero-Enthalpy Basis722

11.3.2 Enthalpy of Formation722

11.3.3 Zero-Entropy Basis728

11.4 Combustion Processes729

11.4.1 Combustion at Constant Pressure729

11.4.2 Combustion at Constant Volume731

11.4.3 Adiabatic Flame Temperature732

11.4.4 Explosion Temperature (Constant-Volume Combustion)739

11.5 Applications to Combustion Systems741

11.5.1 Accounting for Excess Air741

11.5.2 Accounting for Air or Fuel Preheating743

11.5.3 Applications744

11.6 Applying the Second Law to Combustion Processes746

11.6.1 Determining the Possibility of Reaction:Adiabatic Combustion746

11.6.2 Determining the Possibility of Reaction:General Combustion Problems749

11.7 Applications to Real Devices: Efficiency of Combustion Equipment752

PROBLEMS762

REFERENCES771

CHAPTER 12 Phase and Chemical Equilibrium772

12.1 Introduction775

12.1.1 Chemical Equilibrium775

12.1.2 The Gibbs-Duhem Relation776

12.2 Equilibrium in Nonreacting Systems777

12.2.1 Isolated Systems778

12.2.2 Single-Component Phase Equilibrium778

12.2.3 Ideal Solutions780

12.2.4 Phase Rule783

12.3 Equilibrium in Systems with Chemical Reaction785

12.3.1 Finding the Equilibrium Constant786

12.3.2 Values of the Equilibrium Constant790

12.3.3 Temperature Dependence of K794

12.3.4 Pressure Dependence of Equilibrium Concentrations796

12.3.5 Phase Rule797

12.4 General Equilibrium798

12.4.1 Isolated System in Chemical Equilibrium799

12.4.2 Control Mass at Constant Volume800

12.4.3 Control Mass at Constant Temperature and Pressure803

12.4.4 General Criterion for Chemical Equilibruim804

12.5 Concluding Remarks805

PROBLEMS805

CHAPTER 13 Introduction to Microscopic Thermodynamics812

13.1 Introduction815

13.2 Defining a Microscopic System815

13.2.1 General Properties816

13.2.2 Allowable Microstates818

13.3 Influence of Ouantum Effects824

13.3.1 An Example of Quantization825

13.3.2 Uncertainty Principle826

13.3.3 Bose-Einstein Statistics827

13.3.4 Fermi-Dirac Statistics828

13.3.5 Maxwell-Boltzmann Statistics829

13.4 Application of Microsystem Information:Entropy and Other Properties830

13.5 First Law837

13.6 Concluding Remarks837

PROBLEMS838

APPENDIX A A Short History of the Development of Thermodynamics845

APPENDIX B Conversion Factors863

APPENDIX C Thermodynamic Properties in Dimensionless Form or for Both SI and USCS Units867

APPENDIX D Tables and Diagrams of Thermodynamic Data for Various Substances —SI Units909

APPENDIX E Tables and Diagrams of Thermodynamic Data for Various Substances —USCS Units947

APPENDIX F Reynolds' Transport Theorem989

APPENDIX G Computerized Tables of Thermodynamic Properties995

APPENDIX H Fundamentals of Mathematics for Thermodynamics999

APPENDIX I Answers to Selected Homework Problems1017

Index1025

热门推荐