图书介绍

INTRODUCTION TO HIGHER ALGEBRAPDF|Epub|txt|kindle电子书版本网盘下载

INTRODUCTION TO HIGHER ALGEBRA
  • MAXIME BOCHER 著
  • 出版社:
  • ISBN:
  • 出版时间:未知
  • 标注页数:321页
  • 文件大小:11MB
  • 文件页数:328页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

INTRODUCTION TO HIGHER ALGEBRAPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

CHAPTER Ⅰ POLYNOMIALS AND THEIR MOST FUNDAMENTAL PROPERTIES1

1.Polynomials in One Variable1

2.Polynomials in More than One Variable4

3.Geometric Interpretations8

4.Homogeneous Coordinates11

5.The Continuity of Polynomials14

6.The Fundamental Theorem of Algebra16

CHAPTER Ⅱ A FEW PROPERTIES OF DETERMINANTS20

7.Some Definitions20

8.Laplace's Development24

9.The Multiplication Theorem26

10.Bordered Determinants28

11.Adjoint Determinants and their Minors30

CHAPTER Ⅲ THE THEORY OF LINEAR DEPHNDENCE34

12.Definitions and Preliminary Theorems34

13.The Condition for Linear Dependence of Sets of Constants36

14.The Linear Dependence of Polynomials38

15.Geometric Illustrations39

CHAPTER Ⅳ LINEAR EQUATIONS43

16.Non-Homogeneous Linear Equations43

17.Homogeneous Linear Equations47

18.Fundamental Systems of Solutions of Homogeneous Linear Equations49

CHAPTER Ⅴ SOME THEOREMS CONCERNING THE RANK OF A MATRIX54

19.General Matrices54

20.Symmetrical Matrices56

CHAPTER Ⅵ LINEAR TRANSFORMATIONS AND THE COMBINATION OF MATRICES60

21.Matrices as Complex Quantities60

22.The Multiplication of Matrices62

23.Linear Transformation66

24.Collineation68

25.Further Development of the Algebra of Matrices74

26.Sets,Systems,and Groups80

27.Isomorphism83

CHAPTER Ⅶ INVARIANTS.FIRST PRINCIPLES AND ILLUSTRATIONS88

28.Absolute Invariants;Geometric,Algebraic,and Arithmetical88

29.Equivalence92

30.The Rank of a System of Points or a System of Linear Forms as an Invariant94

31.Relative Invariants and Covariants95

32.Some Theorems Concerning Linear Forms100

33.Cross-Ratio and Harmonic Division102

34.Plane-Coordinates and Contragredient Variables107

35.Line-Coordinates in Space110

CHAPTER Ⅷ BILINEAR FORMS114

36.The Algebraic Theory114

37.A Geometric Application116

CHAPTER Ⅸ GEOMETRIC INTRODUCTION TO THE STUDY OF QUADRATIC FORMS118

38.Quadric Surfaces and their Tangent Lines and Planes118

39.Conjugate Points and Polar Planes121

40.Classification of Quadric Surfaces by Means of their Rank123

41.Reduction of the Equation of a Quadric Surface to a Normal Form124

CHAPTER Ⅹ QUADRATIC FORMS127

42.The General Quadratic Form and its Polar127

43.The Matrix and the Discriminant of a Quadratic Form128

44.Vertices of Quadratic Forms129

45.Reduction of a Quadratic Form to a Sum of Squares131

46.A Normal Form,and the Equivalence of Quadratic Forms134

47.Reducibility136

48.Integral Rational Invariants of a Quadratic Form137

49.A Second Method of Reducing a Quadratic Form to a Sum of Squares139

CHAPTER Ⅺ REAL QUADRATIC FORMS144

50.The Law of Inertia144

51.Classification of Real Quadratic Forms147

52.Definite and Indefinite Forms150

CHAPTER Ⅻ THE SYSTEM OF A QUADRATIC FORM AND ONE OR MORE LINEAR FORMS155

53.Relations of Planes and Lines to a Quadric Surface155

54.The Adjoint Quadratic Form and Other Invariants159

55.The Rank of the Adjoint Form161

CHAPTER ⅩⅢ PAIRS OF QUADRATIC FORMS163

56.Pairs of Conics163

57.Invariants of a Pair of Quadratic Forms.Their λ-Equation165

58.Reduction to Normal Form when the λ-Equation has no Multiple Roots167

59.Reduction to Normal Form when ψ is Definite and Non-Singular170

CHAPTER ⅩⅣ SOME PROPERTIES OF POLYNOMIALS IN GENERAL174

60.Factors and Reducibility174

61.The Irreducibility of the General Determinant and of the Symmetrical Determinant176

62.Corresponding Homogeneous and Non-Homogeneous Polynomials178

63.Division of Polynomials180

64.A Special Transformation of a Polynomial184

CHAPTER ⅩⅤ FACTORS AND COMMON FACTORS OF POLYNOMIALS IN ONE VARIABLE AND OF BINARY FORMS187

65.Fundamental Theorems on the Factoring of Polynomials in One Variable and of Binary Forms187

66.The Greatest Common Divisor of Positive Integers188

67.The Greatest Common Divisor of Two Polynomials in One Variable191

68.The Resultant of Two Polynomials in One Variable195

69.The Greatest Common Divisor in Determinant Form197

70.Common Roots of Equations.Elimination198

71.The Cases a0=0 and b0=0200

72.The Resultant of Two Binary Forms201

CHAPTER ⅩⅥ FACTORS OF POLYNOMIALS IN TWO OR MORE VARIABLES203

73.Factors Involving only One Variable of Polynomials in Two Variables203

74.The Algorithm of the Greatest Common Divisor for Polynomials in Two Variables206

75.Factors of Polynomials in Two Variables208

76.Factors of Polynomials in Three or More Variables212

CHAPTER ⅩⅦ GENERAL THEOREMS ON INTEGRAL RATIONAL INVARIANTS218

77.The Invariance of the Factors of Invariants218

78.A More General Method of Approach to the Subject of Relative Invariants220

79.The Isobaric Character of Invariants and Covariants222

80.Geometric Properties and the Principle of Homogeneity226

81.Homogeneous Invariants230

82.Resultants and Discriminants of Binary Forms236

CHAPTER ⅩⅧ SYMMETRIC POLYNOMIALS240

83.Fundamental Conceptions.∑ and S Functions240

84.Elementary Symmetric Functions242

85.The Weights and Degrees of Symmetric Polynomials245

86.The Resultant and the Discriminant of Two Polynomials in One Variable248

CHAPTER ⅩⅨ POLYNOMIALS SYMMETRIC IN PAIRS OF VARIABLES252

87.Fundamental Conceptions.∑ and S Functions252

88.Elementary Symmetric Functions of Pairs of Variables253

89.Binary Symmetric Functions255

90.Resultants and Discriminants of Binary Forms257

CHAPTER ⅩⅩ ELEMENTARY DIVISORS AND THE EQUIVALENCE OF λ-MATRICES262

91.λ-Matrices and their Elementary Transformations262

92.Invariant Factors and Elementary Divisors269

93.The Practical Determination of Invariant Factors and Elementary Divisors272

94.A Second Definition of the Equivalence of λ-Matrices274

95.Multiplication and Division of λ-Matrices277

CHAPTER ⅩⅪ THE EQUIVALENCE AND CLASSIFICATION OF PAIRS OF BILINEAR FORMS AND OF COLLINEATIONS279

96.The Equivalence of Pairs of Matrices279

97.The Equivalence of Pairs of Bilinear Forms283

98.The Equivalence of Collineations284

99.Classification of Pairs of Bilinear Forms287

100.Classification of Collineations292

CHAPTER ⅩⅫ THE EQUIVALENCE AND CLASSIFICATION OF PAIRS OF QUADRATIC FORMS296

101.Two Theerems in the Theory of Matrices296

102.Symmetric Matrices299

103.The Equivalence of Pairs of Quadratic Forms302

104.Classification of Pairs of Quadratic Forms305

105.Pairs of Quadratic Equations,and Pencils of Forms or Equations307

106.Conclusion313

INDEX317

热门推荐