图书介绍
算法设计技巧与分析 英文版PDF|Epub|txt|kindle电子书版本网盘下载
- (沙特阿拉伯)阿苏外耶著 著
- 出版社: 北京:电子工业出版社
- ISBN:9787121204197
- 出版时间:2013
- 标注页数:523页
- 文件大小:84MB
- 文件页数:540页
- 主题词:电子计算机-算法设计-高等学校-教材-英文;电子计算机-算法分析-高等学校-教材-英文
PDF下载
下载说明
算法设计技巧与分析 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
PART 1 Basic Concepts and Introduction to Algorithms1
Chapter 1 Basic Concepts in Algorithmic Analysis5
1.1 Introduction5
1.2 Historical Background6
1.3 Binary Search8
1.3.1 Analysis of the binary search algorithm10
1.4 Merging Two Sorted Lists12
1.5 Selection Sort14
1.6 Insertion Sort15
1.7 Bottom-Up Merge Sorting17
1.7.1 Analysis of bottom-up merge sorting19
1.8 Time Complexity20
1.8.1 Order of growth21
1.8.2 The O-notation25
1.8.3 The Ω-notation26
1.8.4 The ?-notation27
1.8.5 Examples29
1.8.6 Complexity clases and the o-notation31
1.9 Space Complexity32
1.10 Optimal Algorithms34
1.11 How to Estimate the Running Time of an Algorithm35
1.11.1 Counting the number of iterations35
1.11.2 Counting the frequency of basic operations38
1.11.3 Using recurrence relations41
1.12 Worst case and average case analysis42
1.12.1 Worst case analysis44
1.12.2 Average case analysis46
1.13 Amortized Analysis47
1.14 Input Size and Problem Instance50
1.15 Exercises52
1.16 Bibliographic Notes59
Chapter 2 Mathematical Preliminaries61
2.1 Sets,Relations and Functions61
2.1.1 Sets62
2.1.2 Relations63
2.1.2.1 Equivalence relations64
2.1.3 Functions64
2.2 Proof Methods65
2.2.1 Direct proof65
2.2.2 Indirect proof66
2.2.3 Proof by contradiction66
2.2.4 Proof by counterexample67
2.2.5 Mathematical induction68
2.3 Logarithms69
2.4 Floor and Ceiling Functions70
2.5 Factorial and Binomial Coefficients71
2.5.1 Factorials71
2.5.2 Binomial coeffcients73
2.6 The Pigeonhole Principle75
2.7 Summations76
2.7.1 Approximation of summations by integration78
2.8 Recurrence Relations82
2.8.1 Solution of linear homogeneous recurrences83
2.8.2 Solution of inhomogeneous recurrences85
2.8.3 Solution of divide-and-conquer recurrences87
2.8.3.1 Expanding the recurrence87
2.8.3.2 Substitution91
2.8.3.3 Change of variables95
2.9 Exercises98
Chapter 3 Data Structures103
3.1 Introduction103
3.2 Linked Lists103
3.2.1 Stacks and queues104
3.3 Graphs104
3.3.1 Representation of graphs106
3.3.2 Planar graphs107
3.4 Trees108
3.5 Rooted Trees108
3.5.1 Tree traversals109
3.6 Binary Trees109
3.6.1 Some quantitative aspects of binary trees111
3.6.2 Binary search trees112
3.7 Exercises112
3.8 Bibliographic Notes114
Chapter 4 Heaps and the Disjoint Sets Data Structures115
4.1 Introduction115
4.2 Heaps115
4.2.1 Operations on heaps116
4.2.2 Creating a heap120
4.2.3 Heapsort124
4.2.4 Min and max heaps125
4.3 Disjoint Sets Data Structures125
4.3.1 The union by rank heuristic127
4.3.2 Path compression129
4.3.3 The union-find algorithms130
4.3.4 Analysis of the union-find algorithms132
4.4 Exercises134
4.5 Bibliographic Notes137
PART 2 Techniques Based on Recursion139
Chapter 5 Induction143
5.1 Introduction143
5.2 Two Simple Examples144
5.2.1 Selection sort144
5.2.2 Insertion sort145
5.3 Radix Sort145
5.4 Integer Exponentiation148
5.5 Evaluating Polynomials(Horner’s Rule)149
5.6 Generating Permutations150
5.6.1 The first algorithm150
5.6.2 The second algorithm152
5.7 Finding the Majority Element154
5.8 Exercises155
5.9 Bibliographic Notes158
Chapter 6 Divide and Conquer161
6.1 Introduction161
6.2 Binary Search163
6.3 Mergesort165
6.3.1 How the algorithm works166
6.3.2 Analysis of the mergesort algorithm167
6.4 The Divide and Conquer Paradigm169
6.5 Selection:Finding the Median and the kth Smallest Element172
6.5.1 Analysis of the selection algorithm175
6.6 Quicksort177
6.6.1 A partitioning algorithm177
6.6.2 The sorting algorithm179
6.6.3 Analysis of the quicksort algorithm181
6.6.3.1 The worst case behavior181
6.6.3.2 The average case behavior184
6.6.4 Comparison of sorting algorithms186
6.7 Multiplication of Large Integers187
6.8 Matrix Multiplication188
6.8.1 The traditional algorithm188
6.8.2 Recursive version188
6.8.3 Strassen’s algorithm190
6.8.4 Comparisons of the three algorithms191
6.9 The Closest Pair Problem192
6.9.1 Time complexity194
6.10 Exercises195
6.11 Bibliographic Notes202
Chapter 7 Dynamic Programming203
7.1 Introduction203
7.2 The Longest Common Subsequence Problem205
7.3 Matrix Chain Multiplication208
7.4 The Dynamic Programming Paradigm214
7.5 The All-Pairs Shortest Path Problem215
7.6 The Knapsack Problem217
7.7 Exercises220
7.8 Bibliographic Notes226
PART 3 First-Cut Techniques227
Chapter 8 The Greedy Approach231
8.1 Introduction231
8.2 The Shortest Path Problem232
8.2.1 A linear time algorithm for dense graphs237
8.3 Minimum Cost Spanning Trees(Kruskal’s Algorithm)239
8.4 Minimum Cost Spanning Trees(Prim’s Algorithm)242
8.4.1 A linear time algorithm for dense graphs246
8.5 File Compression248
8.6 Exercises251
8.7 Bibliographic Notes255
Chapter 9 Graph Traversal257
9.1 Introduction257
9.2 Depth-First Search257
9.2.1 Time complexity of depth-first search261
9.3 Applications of Depth-First Search262
9.3.1 Graph acyclicity262
9.3.2 Topological sorting262
9.3.3 Finding articulation points in a graph263
9.3.4 Strongly connected components266
9.4 Breadth-First Search267
9.5 Applications of Breadth-First Search269
9.6 Exercises270
9.7 Bibliographic Notes273
PART 4 Complexity of Problems275
Chapter 10 NP-Complete Problems279
10.1 Introduction279
10.2 The Class P282
10.3 The Class NP283
10.4 NP-Complete Problems285
10.4.1 The satisfiability problem285
10.4.2 Vertex cover,independent set and clique problems288
10.4.3 More NP-complete Problems291
10.5 The Class co-NP292
10.6 The Class NPI294
10.7 The Relationships Between the Four Classes295
10.8 Exercises296
10.9 Bibliographic Notes298
Chapter 11 Introduction to Computational Complexity299
11.1 Introduction299
11.2 Model of Computation:The Turing Machine299
11.3 k-tape Turing Machines and Time complexity300
11.4 Off-Line Turing Machines and Space Complexity303
11.5 Tape Compression and Linear Speed-Up305
11.6 Relationships Between Complexity Classes306
11.6.1 Space and time hierarchy theorems309
11.6.2 Padding arguments311
11.7 Reductions313
11.8 Completeness318
11.8.1 NLOGSPACE-complete problems318
11.8.2 PSPACE-complete problems319
11.8.3 P-complete problems321
11.8.4 Some conclusions of completeness323
11.9 The Polynomial Time Hierarchy324
11.10 Exercises328
11.11 Bibliographic Notes332
Chapter 12 Lower Bounds335
12.1 Introduction335
12.2 Trivial Lower Bounds335
12.3 The Decision Tree Model336
12.3.1 The search problem336
12.3.2 The sorting problem337
12.4 The Algebraic Decision Tree Model339
12.4.1 The element uniqueness problem341
12.5 Linear Time Reductions342
12.5.1 The convex hull problem342
12.5.2 The closest pair problem343
12.5.3 The Euclidean minimum spanning tree problem344
12.6 Exercises345
12.7 Bibliographic Notes346
PART 5 Coping with Hardness349
Chapter 13 Backtracking353
13.1 Introduction353
13.2 The 3-Coloring Problem353
13.3 The 8-Queens Problem357
13.4 The General Backtracking Method360
13.5 Branch and Bound362
13.6 Exercises367
13.7 Bibliographic notes369
Chapter 14 Randomized Algorithms371
14.1 Introduction371
14.2 Las Vegas and Monte Carlo Algorithms372
14.3 Randomized Quicksort373
14.4 Randomized Selection374
14.5 Testing String Equality377
14.6 Pattern Matching379
14.7 Random Sampling381
14.8 Primality Testing384
14.9 Exercises390
14.10 Bibliographic Notes392
Chapter 15 Approximation Algorithms393
15.1 Introduction393
15.2 Basic Definitions393
15.3 Difference Bounds394
15.3.1 Planar graph coloring395
15.3.2 Hardness result:the knapsack problem395
15.4 Relative Performance Bounds396
15.4.1 The bin packing problem397
15.4.2 The Euclidean traveling salesman problem399
15.4.3 The vertex cover problem401
15.4.4 Hardness result:the traveling salesman problem402
15.5 Polynomial Approximation Schemes404
15.5.1 The knapsack problem404
15.6 Fully Polynomial Approximation Schemes407
15.6.1 The subset-sum problem408
15.7 Exercises410
15.8 Bibliographic Notes413
PART 6 Iterative Improvement for Domain-Specific Problems415
Chapter 16 Network Flow419
16.1 Introduction419
16.2 Preliminaries419
16.3 The Ford-Fulkerson Method423
16.4 Maximum Capacity Augmentation424
16.5 Shortest Path Augmentation426
16.6 Dinic’s Algorithm429
16.7 The MPM Algorithm431
16.8 Exercises434
16.9 Bibliographic Notes436
Chapter 17 Matching437
17.1 Introduction437
17.2 Preliminaries437
17.3 The Network Flow Method440
17.4 The Hungarian Tree Method for Bipartite Graphs441
17.5 Maximum Matching in General Graphs443
17.6 An O(n2.5)Algorithm for Bipartite Graphs450
17.7 Exercises455
17.8 Bibliographic Notes457
PART 7 Techniques in Computational Geometry459
Chapter 18 Geometric Sweeping463
18.1 Introduction463
18.2 Geometric Preliminaries465
18.3 Computing the Intersections of Line Segments467
18.4 The Convex Hull Problem471
18.5 Computing the Diameter of a Set of Points474
18.6 Exercises478
18.7 Bibliographic Notes480
Chapter 19 Voronoi Diagrams481
19.1 Introduction481
19.2 Nearest-Point Voronoi Diagram481
19.2.1 Delaunay triangulation484
19.2.2 Construction of the Voronoi diagram486
19.3 Applications of the Voronoi Diagram489
19.3.1 Computing the convex hull489
19.3.2 All nearest neighbors490
19.3.3 The Euclidean minimum spanning tree491
19.4 Farthest-Point Voronoi Diagram492
19.4.1 Construction of the farthest-point Voronoi diagram493
19.5 Applications of the Farthest-Point Voronoi Diagram496
19.5.1 All farthest neighbors496
19.5.2 Smallest enclosing circle497
19.6 Exercises497
19.7 Bibliographic Notes499
Bibliography501
Index511