图书介绍

大学数学系列课程学习辅导与同步练习 高等数学 上PDF|Epub|txt|kindle电子书版本网盘下载

大学数学系列课程学习辅导与同步练习 高等数学 上
  • 张鸿雁,任叶庆,刘碧玉,肖莉编著 著
  • 出版社: 长沙:中南大学出版社
  • ISBN:9787548718925
  • 出版时间:2015
  • 标注页数:64页
  • 文件大小:7MB
  • 文件页数:73页
  • 主题词:高等数学-高等学校-教学参考资料

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

大学数学系列课程学习辅导与同步练习 高等数学 上PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第1章 函数与极限1

Ⅰ.学习内容要点与要求1

Ⅱ.重点、难点与知识结构1

Ⅲ.典型例题分析2

第2章 一元函数微分学11

Ⅰ.学习内容要点与要求11

Ⅱ.重点、难点与知识结构12

Ⅲ.典型例题分析35

第3章 一元函数积分学35

Ⅰ.学习内容要点与要求35

Ⅱ.重点、难点与知识结构35

Ⅲ.典型例题分析38

第4章 无穷级数56

Ⅰ.学习内容要点与要求56

Ⅱ.重点、难点与知识结构56

Ⅲ.典型例题分析57

导学1.1 (1.1 函数及其性质)65

导学1.2 (1.2 数列的极限)67

导学1.3 (1.2 函数极限)69

导学1.4 (1.3 极限的运算法则)71

导学1.5 (1.5 极限存在准则 两个重要极限)73

导学1.6 (1.6 无穷小与无穷大)75

导学1.7 (1.7 函数的连续快)77

导学2.1 (2.1 导数及微分 2.1.1引例 2.1.2导数概念 2.1.3导数的几何意义 2.1.4可导与连续的关系 2.1.5求导数的例题·导数基本公式表)79

导学2.1 (2.1.6 函数的和、积、商的导数 2.1.7反函数的导数 2.1.8复合函数的导数)81

导学2.3 (2.1.9 高阶导数 2.1.10隐函数的求导法则)83

导学2.4 (2.1.1 1对数求导法 2.1.12参数方程所确定的函数的导数)85

导学2.5 (2.1.1 3微分概念 2.1.14微分的求法·微分形式不变性 2.1.15微分应用于近似计算及误差的估计)87

导学2.6 (2.2.1 中值定理)89

导学2.7 (2.2.2 Taylor公式)91

导学2.8 (2.2.3 罗必塔法则)93

导学2.9 (2.3 导数的应用 2.3.1 函数的单调增减性的判定 2.3.2函数的极值及其求法 2.3.3最大值及最小值的求法)95

导学2.1 0(2.3.4 曲线的凹性及其判定法 2.3.5曲线的拐点及其求法 2.3.6曲线的渐近线 2.3.7函数图形的描绘方法)97

导学2.1 1(2.3.8 弧微分·曲率 2.3.9曲率圆·曲率半径)99

导学3.1 (3.1 不定积分 3.1.1原函数与不定积分的概念 3.1.2不定积分的性质 3.1.3基本积分表)101

导学3.2 (3.1.4 换元积分法(第一换元法、第二换元法——三角换元))103

导学3.3 (3.1.4 (续)换元积分法 3.1.5分部积分法)105

导学3.4 (3.1.6 有理函数的分解 3.1.7有理函数的积分 3.1.8三角函数的有理式的积分)107

导学3.5 (3.1.9 简单无理函数的积分 3.1.10关于积分问题的一些补充说明)109

导学3.6 (3.2 定积分 3.2.1曲边梯形的面积变力所作的功 3.2.2定积分的概念 3.2.3定积分的简单性质中值定理)111

导学3.7 (3.2.4 Newton-Leibniz公式)113

导学3.8 (3.2.5 用换元法计算定积分 3.2.6用分部积分法计算定积分)115

导学3.9 (3.2.7 广义积分)117

导学3.1 0(3.3 定积分的应用 3.3.1平面图形的面积 3.3.2体积(旋转体的体积))119

导学3.1 1(3.3.2 体积(平行截面面积已知的立体体积) 3.3.3平面曲线的弧长 3.3.4定积分在物理、力学上的应用)121

导学4.1 (4.1.1 常数项级数的概念 4.1.2常数项级数的基本性质 4.1.3正项级数及其敛散性(比较法及其极限形式))123

导学4.2 (4.1.3 正项级数及其敛散性(比值法、根值法) 4.2交错级数与任意项级数)125

导学4.3 (4.3.1 函数项级数的概念 4.3.2幂级数及其收敛半径)127

导学4.4 (4.3.3 幂级数的运算性质 4.3.4幂级数和函数性质)129

导学4.5 (4.4 函数展开成幂级数)131

导学4.6 (4.5 Fourier级数)133

导学4.7 (4.6 函数展开为正弦函数与余弦函数)135

练习1.1 (1.1 函数及其性质)137

练习1.2 (1.2 数列的极限)139

练习1.3 (1.3 函数的极限)141

练习1.4 (1.4 极限的运算法则)143

练习1.5 (1.5 极限存在准则 两个重要极限)145

练习1.6 (1.6 无穷小与无穷大)147

练习1.7 (1.7 函数的连续性)149

练习2.1 (2.1.1 引例 2.1.2导数概念 2.1.3导数的几何意义 2.1.4可导与连续的关系 2.1.5求导数的例题·导数基本公式表)151

练习2.2 (2.1.6 函数的和、积、商的导数 2.1.7反函数的导数 2.1.8复合函数的导数)153

练习2.3 (2.1.9 高阶导数 2.1.10隐函数的求导法则)155

练习2.4 (2.1.1 1对数求导法 2.1.12参数方程所确定的函数的导数)157

练习2.5 (2.1.1 3微分概念 2.1.14微分的求法·微分形式不变性)159

练习2.6 (2.2 中值定理 2.2.1中值定理)161

练习2.7 (2.2.2 Taylor公式)163

练习2.8 (2.2.3 洛必达法则)165

练习2.9 (2.3 导数的应用 2.3.1函数的单调增减性的判定 2.3.2函数的极值及其求法 2.3.3最大值及最小值的求法)167

练习2.1 0(2.3.4 曲线的凹凸性及其判定法 2.3.5曲线的拐点及其求法 2.3.6曲线的渐近线 2.3.7函数图形的描绘方法)169

练习2.1 1(2.3.8 弧微分·曲率 2.3.9曲率圆·曲率半径)171

练习3.1 (3.1.1 原函数与不定积分的概念)173

练习3.2 (3.1.2 不定积分的性质)175

练习3.3 (3.1.3 基本积分表)177

练习3.4 (3.1.4 换元积分法)179

练习3.5 (3.1.5 分部积分法)181

练习3.6 (3.1.6 有理函数的分解)183

练习3.7 (3.1.7 有理函数的积分)185

练习3.8 (3.1.8 三角函数的有理式的积分)187

练习3.9 (3.1.9 简单无理函数的积分)189

练习3.1 0(3.1.1 0关于积分问题的一些补充说明)191

练习3.1 1(3.2.1 —3.2.2定积分的概念与性质)193

练习3.1 2(3.2.3 —3.2.4中值定理与Newton-Leibniz公式)195

练习3.1 3(3.2.5 —3.2.6定积分的换元积分法与分部积分法)197

练习3.1 4(3.2.7 广义积分)199

练习3.1 5(3.3.1 —3.3.2定积分的几何应用)201

练习3.1 6(3.3.3 —3.3.4定积分的物理应用)203

练习4.1 (4.1 常数项级数与正项级数)205

练习4.2 (4.2 交错级数与任意项级数)207

练习4.3 (4.3 幂级数)209

练习4.4 (4.4 函数展开成幂级数)211

练习4.5 (4.5 Fourier级数)213

练习4.6 (4.6 函数展开成正弦级数与余弦级数)215

热门推荐