图书介绍

数字集成电路 设计透视 第2版·影印版PDF|Epub|txt|kindle电子书版本网盘下载

数字集成电路 设计透视 第2版·影印版
  • 拉贝(Rabaey,J.M.),钱德拉卡山(Chandrkasan,A.),尼科利奇(Nikolic 著
  • 出版社: 北京:清华大学出版社
  • ISBN:7302079682
  • 出版时间:2004
  • 标注页数:761页
  • 文件大小:124MB
  • 文件页数:790页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

数字集成电路 设计透视 第2版·影印版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Part 1 The Fabrics1

Chapter 1 Introduction3

1.1 A Historical Perspective4

1.2 Issues in Digital Integrated Circuit Design6

1.3 Quality Metrics of a Digital Design15

1.3.1 Cost of an Integrated Circuit16

1.3.2 Functionality and Robustness18

1.3.3 Performance27

1.3.4 Power and Energy Consumption30

1.4 Summary31

1.5 To Probe Further31

Reference Books32

References33

Chapter 2 The Manufacturing Process35

2.1 Introduction36

2.2 Manufacturing CMOS Integrated Circuits36

2.2.1 The Silicon Wafer37

2.2.2 Photolithography37

2.2.3 Some Recurring Process Steps41

2.2.4 Simplified CMOS Process Flow42

2.3 Design Rules—The Contract between Designer and Process Engineer47

2.4 Packaging Integrated Circuits51

2.4.1 Package Materials52

2.4.2 Interconnect Levels53

2.4.3 Thermal Considerations in Packaging59

2.5 Perspective—Trends in Process Technology61

2.5.1 Short-Term Developments61

2.5.2 In the Longer Term63

2.6 Summary64

2.7 To Probe Further64

References64

Design Methodology Insert A IC LAYOUT67

A.1 To Probe Further71

References71

Chapter 3 The Devices73

3.1 Introduction74

3.2 The Diode74

3.2.1 A First Glance at the Diode—The Depletion Region75

3.2.2 Static Behavior77

3.2.3 Dynamic,or Transient,Behavior80

3.2.4 The Actual Diode—Secondary Effects84

3.2.5 The SPICE Diode Model85

3.3 The MOS(FET)Transistor87

3.3.1 A First Glance at the Device87

3.3.2 The MOS Transistor under Static Conditions88

3.3.3 The Actual MOS Transistor—Some Secondary Effects114

3.3.4 SPICE Models for the MOS Transistor117

3.4 A Word on Process Variations120

3.5 Perspective—Technology Scaling122

3.6 Summary128

3.7 To Probe Further129

References130

Design Methodology Insert B Circuit Simulation131

References134

Chapter 4 The Wire135

4.1 Introduction136

4.2 A First Glance136

4.3 Interconnect Parameters—Capacitance,Resistance,and Inductance138

4.3.1 Capacitance138

4.3.2 Resistance144

4.3.3 Inductance148

4.4 Electrical Wire Models150

4.4.1 The Ideal Wire151

4.4.2 The Lumped Model151

4.4.3 The Lumped RC Model152

4.4.4 The Distributed rc Line156

4.4.5 The Transmission Line159

4.5 SPICE Wire Models170

4.5.1 Distributed rc Lines in SPICE170

4.5.2 Transmission Line Models in SPICE170

4.5.3 Perspective:A Look into the Future171

4.6 Summary174

4.7 To Probe Further174

References174

Part 2 A Circuit Perspective177

Chapter 5 The CMOS Inverter179

5.1 Introduction180

5.2 The Static CMOS Inverter—An Intuitive Perspective180

5.3 Evaluating the Robustness of the CMOS Inverter:The Static Behavior184

5.3.1 Switching Threshold185

5.3.2 Noise Margins188

5.3.3 Robustness Revisited191

5.4 Performance of CMOS Inverter:The Dynamic Behavior193

5.4.1 Computing the Capacitances194

5.4.2 Propagation Delay:First-Order Analysis199

5.4.3 Propagation Delay from a Design Perspective203

5.5 Power,Energy,and Energy Delay213

5.5.1 Dynamic Power Consumption214

5.5.2 Static Consumption223

5.5.3 Putting It All Together225

5.5.4 Analyzing Power Consumption Using SPICE227

5.6 Perspective:Technology Scaling and its Impact on the Inverter Metrics229

5.7 Summary232

5.8 To Probe Further233

References233

Chapter 6 Designing Combinational Logic Gates in CMOS235

6.1 Introduction236

6.2 Static CMOS Design236

6.2.1 Complementary CMOS237

6.2.2 Ratioed Logic263

6.2.3 Pass-Transistor Logic269

6.3 Dynamic CMOS Design284

6.3.1 Dynamic Logic:Basic Principles284

6.3.2 Speed and Power Dissipation of Dynamic Logic287

6.3.3 Signal Integrity Issues in Dynamic Design290

6.3.4 Cascading Dynamic Gates295

6.4 Perspectives303

6.4.1 How to Choose a Logic Style?303

6.4.2 Designing Logic for Reduced Supply Voltages303

6.5 Summary306

6.6 To Probe Further307

References308

Design Methodology Insert C How to Simulate Complex Logic Circuits309

C.1 Representing Digital Data as a Continuous Entity310

C.2 Representing Data as a Discrete Entity310

C.3 Using Higher-Level Data Models315

References317

Design Methodology Insert D Layout Techniques for Complex Gates319

Chapter 7 Designing Sequential Logic Circuits325

7.1 Introduction326

7.1.1 Timing Metrics for Sequential Circuits327

7.1.2 Classification of Memory Elements328

7.2 Static Latches and Registers330

7.2.1 The Bistability Principle330

7.2.2 Multiplexer-Based Latches332

7.2.3 Master-Slave Edge-Triggered Register333

7.2.4 Low-Voltage Static Latches339

7.2.5 Static SR Flip-Flops—Writing Data by Pure Force341

7.3 Dynamic Latches and Registers344

7.3.1 Dynamic Transmission-Gate Edge-triggered Registers344

7.3.2 C2MOS—A Clock-Skew Insensitive Approach346

7.3.3 True Single-Phase Clocked Register(TSPCR)350

7.4 Alternative Register Styles354

7.4.1 Pulse Registers354

7.4.2 Sense-Amplifier-Based Registers356

7.5 Pipelining:An Approach to Optimize Sequential Circuits358

7.5.1 Latch-versus Register-Based Pipelines360

7.5.2 NORA-CMOS—A Logic Style for Pipelined Structures361

7.6 Nonbistable Sequential Circuits364

7.6.1 The Schmitt Trigger364

7.6.2 Monostable Sequential Circuits367

7.6.3 Astable Circuits368

7.7 Perspective:Choosing a Clocking Strategy370

7.8 Summary371

7.9 To Probe Further372

References372

Part 3 A System Perspective375

Chapter 8 Implementation Strategies for Digital ICS377

8.1 Introduction378

8.2 From Custom to Semicustom and Structured-Array Design Approaches382

8.3 Custom Circuit Design383

8.4 Cell-Based Design Methodology384

8.4.1 Standard Cell385

8.4.2 Compiled Cells390

8.4.3 Macrocells,Megacells and Intellectual Property392

8.4.4 Semicustom Design Flow396

8.5 Array-Based Implementation Approaches399

8.5.1 Prediffused(or Mask-Programmable)Arrays399

8.5.2 Prewired Arrays404

8.6 Perspective—The Implementation Platform of the Future420

8.7 Summary423

8.8 To Probe Further423

References424

Design Methodology Insert E Characterizing Logic and Sequential Cells427

References434

Design Methodology Insert F Design Synthesis435

References443

Chapter 9 Coping with Interconnect445

9.1 Introduction446

9.2 Capacitive Parasitics446

9.2.1 Capacitance and Reliability—Cross Talk446

9.2.2 Capacitance and Performance in CMOS449

9.3 Resistive Parasitics460

9.3.1 Resistance and Reliabilitv—Ohmic Voltage Drop460

9.3.2 Electromigration462

9.3.3 Resistance and Performance—RC Delay464

9.4 Inductive Parasitics469

9.4.1 Inductance and Reliability—Voltage Drop469

9.4.2 Inductance and Performance—Transmission-line Effects475

9.5 Advanced Interconnect Techniques480

9.5.1 Reduced-Swing Circuits480

9.5.2 Current-Mode Transmission Techniques486

9.6 Perspective:Networks-on-a-Chip487

9.7 Summary488

9.8 To Probe Further489

References489

Chapter 10 Timing Issues in Digital Circuits491

10.1 Introduction492

10.2 Timing Classification of Digital Systems492

10.2.1 Synchronous Interconnect492

10.2.2 Mesochronous interconnect493

10.2.3 Plesiochronous Interconnect493

10.2.4 Asynchronous Interconnect494

10.3 Synchronous Design—An In-depth Perspective495

10.3.1 Synchronous Timing Basics495

10.3.2 Sources of Skew and Jitter502

10.3.3 Clock-Distribution Techniques508

10.3.4 Latch-Based Clocking516

10.4 Self-Timed Circuit Design519

10.4.1 Self-Timed Logic—An Asynchronous Technique519

10.4.2 Completion-Signal Generation522

10.4.3 Self-Timed Signaling526

10.4.4 Practical Examples of Self-Timed Logic531

10.5 Synchronizers and Arbiters534

10.5.1 Synchronizers—Concept and Implementation534

10.5.2 Arbiters538

10.6 Clock Synthesis and Synchronization Using a Phase-Locked Loop539

10.6.1 Basic Concept540

10.6.2 Building Blocks of a PLL542

10.7 Future Directions and Perspectives546

10.7.1 Distributed Clocking Using DLLs546

10.7.2 Optical Clock Distribution548

10.7.3 Synchronous versus Asynchronous Design549

10.8 Summary550

10.9 To Probe Further551

References551

Design Methodology Insert G Design Verification553

References557

Chapter 11 Designing Arithmetic Building Blocks559

11.1 Introduction560

11.2 Datapaths in Digital Processor Architectures560

11.3 The Adder561

11.3.1 The Binary Adder:Definitions561

11.3.2 The Full Adder:Circuit Design Considerations564

11.3.3 The Binary Adder:Logic Design Considerations571

11.4 The Multiplier586

11.4.1 The Multiplier:Deftnitions586

11.4.2 Partial-Product Generation587

11.4.3 Partial-Product Accumulation589

11.4.4 Final Addition593

11.4.5 Multiplier Summary594

11.5 The Shifter594

11.5.1 Barrel Shifter595

11.5.2 Logarithmic Shifter596

11.6 Other Arithmetic Operators596

11.7 Power and Speed Trade-offs in Datapath Structures600

11.7.1 Design Time Power-Reduction Techniques601

11.7.2 Run-Time Power Management611

11.7.3 Reducing the Power in Standby(or Sleep)Mode617

11.8 Perspective:Design as a Trade-off618

11.9 Summary619

11.10 To Probe Further620

References621

Chapter 12 Designing Memory and Array Structures623

12.1 Introduction624

12.1.1 Memory Classification625

12.1.2 Memory Architectures and Building Blocks627

12.2 The Memory Core634

12.2.1 Read-Only Memories634

12.2.2 Nonvolatile Read-Write Memories647

12.2.3 Read-Write Memories(RAM)657

12.2.4 Contents-Addressable or Associative Memory(CAM)670

12.3 Memory Peripheral Circuitry672

12.3.1 The Address Decoders672

12.3.2 Sense Amplifiers679

12.3.3 Voltage References686

12.3.4 Drivers/Buffers689

12.3.5 Timing and Control689

12.4 Memory Reliability and Yield693

12.4.1 Signal-to-Noise Ratio693

12.4.2 Memory Yield698

12.5 Power Dissipation in Memories701

12.5.1 Sources of Power Dissipation in Memories701

12.5.2 Partitioning of the Memory702

12.5.3 Addressing the Active Power Dissipation702

12.5.4 Data-Retention Dissipation704

12.5.5 Summary707

12.6 Case Studies in Memory Design707

12.6.1 The Programmable Logic Array(PLA)707

12.6.2 A4-Mbit SRAM710

12.6.3 A1-Gbit NAND Flash Memory712

12.7 Perspective:Semiconductor Memory Trends and Evolutions714

12.8 Summary716

12.9 To Probe Further717

References718

Design Methodology Insert H Validation and Test of Manufactured Circuits721

H.1 Introduction721

H.2 Test Procedure722

H.3 Design for Testability723

H.3.1 Issues in Design for Testability723

H.3.2 Ad Hoc Testing725

H.3.3 Scan-Based Test726

H.3.4 Boundary-Scan Design729

H.3.5 Built-in Self-Test(BIST)730

H.4 Test-Pattem Generation734

H.4.1 Fault Models734

H.4.2 Automatic Test-Pattem Generation(ATPG)736

H.4.3 Fault Simulation737

H.5 To Probe Further737

References737

Problem Solutions739

Index745

热门推荐