图书介绍
车辆路径问题 英文PDF|Epub|txt|kindle电子书版本网盘下载
- (美)托夫著 著
- 出版社: 北京:清华大学出版社
- ISBN:9787302244943
- 出版时间:2011
- 标注页数:371页
- 文件大小:17MB
- 文件页数:389页
- 主题词:物流-车辆-运输调度-英文
PDF下载
下载说明
车辆路径问题 英文PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 An Overview of Vehicle Routing Problems&P.Toth,D.Vigo1
1.1 Introduction1
1.2 Problem Definition and Basic Notation5
1.2.1 Capacitated and Distance-Constrained VRP5
1.2.2 VRP with Time Windows8
1.2.3 VRP with Backhauls9
1.2.4 VRP with Pickup and Delivery10
1.3 Basic Models for the VRP11
1.3.1 Vehicle Flow Models11
1.3.2 Extensions of Vehicle Flow Models17
1.3.3 Commodity Flow Models19
1.3.4 Set-Partitioning Models21
1.4 Test Instances for the CVRP and Other VRPs22
Bibliography23
Ⅰ Capacitated Vehicle Routing Problem27
2 Branch-and-Bound Algorithms for the Capacitated VRP&P. Toth,D. Vigo29
2.1 Introduction29
2.2 Basic Relaxations30
2.2.1 Bounds Based on Assignment and Matching30
2.2.2 Bounds Based on Arborescencesand Trees32
2.2.3 Comparison of the Basic Relaxations33
2.3 Better Relaxations35
2.3.1 Additive Bounds for ACVRP35
2.3.2 Further Lower Bounds for ACVRP39
2.3.3 Lagrangian Lower Bounds for SCVRP40
2.3.4 Lower Bounds from a Set-Partitioning Formulation41
2.3.5 Comparison of the Improved Lower Bounds42
2.4 Structure of the Branch-and-Bound Algorithms for CVRP44
2.4.1 Branching Schemes and Search Strategies44
2.4.2 Reduction,Dominance Rules,and Other Features46
2.4.3 Performance of the Branch-and-Bound Algorithms47
2.5 Distance-Constrained VRP48
Bibliography49
3 Branch-and-Cut Algorithms for the Capacitated VRP&D. Naddef,G. Rinaldi53
3.1 Introduction and Two-Index Flow Model53
3.2 Branch-and-Cut55
3.3 Polyhedral Studies58
3.3.1 Capacity Constraints59
3.3.2 Generalized Capacity Constraints61
3.3.3 Framed Capacity Constraints62
3.3.4 Valid Inequalities from STSP62
3.3.5 Valid Inequalities Combining Bin Packing and STSP67
3.3.6 Valid Inequalities from the Stable Set Problem69
3.4 Separation Procedures71
3.4.1 Exact Separation of Capacity Constraints71
3.4.2 Heuristies for Capacity and Related Constraints72
3.4.3 STSP Constraints75
3.5 Branching Strategies75
3.6 Computational Results78
3.7 Conclusions81
Bibliography81
4 Set-Covering-Based Algorithms for the Capacitated VRP&J. Bramel,D.Simchi-Levi85
4.1 Introduction85
4.2 Solving the Linear Programming Relaxation of P87
4.3 Set-Covering-Based Solution Methods89
4.3.1 Branch-and-Bound Algorithm for Problem CG89
4.3.2 Polyhedral Branch-and-Bound Algorithm91
4.3.3 Pseudo-Polynomial Lower Bound on ?min92
4.3.4 Solving PD via Dual-Ascent and Branch-and-Bound94
4.4 Solving the Set-Covering Integer Program96
4.4.1 A Cutting Plane Method97
4.4.2 Branch-and-Price99
4.4.3 Additional Comments on Computational Approaches100
4.5 Computational Results100
4.6 Effectiveness of the Set-Covering Formulation102
4.6.1 Worst-Case Analysis103
4.6.2 Average-Case Analysis103
Bibliography106
5 Classicai Heuristics for the Capacitated VRP&G. Laporte,F. Semet109
5.1 Introduction109
5.2 Constructive Methods110
5.2.1 Clarke and Wright Savings Algorithm110
5.2.2 Enhancements of the Clarke and Wright Algorithm111
5.2.3 Matching-Based Savings Algorithms113
5.2.4 Sequential Insertion Heuristics114
5.3 Two-Phase Methods116
5.3.1 Elementary Clustering Methods116
5.3.2 Truncated Branch-and-Bound118
5.3.3 Petal Algorithms120
5.3.4 Route-First,Cluster-Second Methods120
5.4 Improvement Heuristics121
5.4.1 Single-Route Improvements121
5.4.2 Multiroute Improvements122
5.5 Conclusions125
Bibliography126
6 Metaheuristics for the Capacitated VRP&M. Gendreau,G. Laporte,J.-Y. Potvin129
6.1 Introduction129
6.2 Simulated Annealing130
6.2.1 Two Early Simulated Annealing Algorithms130
6.2.2 Osman's Simulated Annealing Algorithms131
6.2.3 Van Breedam's Experiments133
6.3 Deterministic Annealing133
6.4 Tabu Search134
6.4.1 Two Early Tabu Search Algorithms134
6.4.2 Osman's Tabu Search Algorithm134
6.4.3 Taburoute135
6.4.4 Taillard's Algorithm137
6.4.5 Xu and Kelly's Algorithm137
6.4.6 Rego and Roucairol's Algorithms137
6.4.7 Barbarosoglu and Ozgur's Algorithm138
6.4.8 Adaptive Memory Procedure of Rochat and Taillard138
6.4.9 Granular Tabu Search of Toth and Vigo138
6.4.10 Computational Comparison140
6.5 Genetic Algorithms140
6.5.1 Simple Genetic Algorithm140
6.5.2 Application to Sequencing Problems141
6.5.3 Application to the VRP142
6.6 Ant Algorithms144
6.7 Neural Networks146
6.8 Conclusions148
Bibliography149
Ⅱ Important Variants of the Vehicle Routing Problem155
7 VRP with Time Windows&J.-F. Cordeau,G. Desaulniers,J. Desrosiers,M.M. Solomon,F. Soumis157
7.1 Introduction157
7.2 Problem Formulation158
7.2.1 Formulation158
7.2.2 Network Lower Bound159
7.2.3 Linear Programming Lower Bound159
7.2.4 Algorithms160
7.3 Upper Bounds:Heuristic Approaches160
7.3.1 Route Construction160
7.3.2 Route Improvement161
7.3.3 Composite Heuristics161
7.3.4 Metaheuristics162
7.3.5 Parallel Implementations165
7.3.6 Optimization-Based Heuristics165
7.3.7 Asymptotically Optimal Heuristics165
7.4 Lower Bounds from Decomposition Approaches166
7.4.1 Lagrangian Relaxation166
7.4.2 Capacity and Time-Constrained Shortest-Path Problem167
7.4.3 Variable Splitting168
7.4.4 Column Generation169
7.4.5 Set-Partitioning Formulation169
7.4.6 Lower Bound170
7.4.7 Commodity Aggregation171
7.4.8 Hybrid Approach172
7.5 Integer Solutions173
7.5.1 Binary Decisions on Arc Flow Variables173
7.5.2 Integer Decisions on Arc Flow Variables173
7.5.3 Binary Decisions on Path Flow Variables174
7.5.4 Subtour Elimination and 2-Path Cuts175
7.5.5 k-Path Cuts and Parallelism176
7.5.6 Integer Decisions on(Fractional and Integer)Time Variables176
7.6 Special Cases177
7.6.1 Multiple TSP with Time Windows177
7.6.2 VRP with Backhauls and Time Windows177
7.7 Extensions178
7.7.1 Heterogeneous Fleet,Multiple-Depot,and Initial Conditions178
7.7.2 Fleet Size179
7.7.3 Multiple Time Windows179
7.7.4 Soft Time Windows179
7.7.5 Time-and Load-Dependent Costs180
7.7.6 Driver Considerations180
7.8 Computational Results for VRPTW181
7.9 Conclusions184
Bibliography186
8 VRP with Backhauls&P. Toth,D. Vigo195
8.1 Introduction195
8.1.1 Benchmark Instances197
8.2 Integer Linear Programming Models198
8.2.1 Formulation of Toth and Vigo198
8.2.2 Formulation of Mingozzi,Giorgi,and Baldacci200
8.3 Relaxations201
8.3.1 Relaxation Obtained by Dropping the CCCs202
8.3.2 Relaxation Based on Projection202
8.3.3 Lagrangian Relaxation203
8.3.4 Overall Additive Lower Bound204
8.3.5 Relaxation Based on the Set-Partitioning Model204
8.4 Exact Algorithms208
8.4.1 Algorithm of Toth and Vigo208
8.4.2 Algorithm of Mingozzi,Giorgi,and Baldacci209
8.4.3 Computational Results for the Exact Algorithms210
8.5 Heuristic Algorithms214
8.5.1 Algorithm of Deifand Bodin214
8.5.2 Algorithms of Goetschalckx and Jacobs-Blecha215
8.5.3 Algorithm of Toth and Vigo216
8.5.4 Computational Results for the Heuristics217
Bibliography221
9 VRP with Pickup and Delivery&G. Desaulniers,J. Desrosiers,A. Erdmann,M.M. Solomon,F. Soumis225
9.1 Introduction225
9.2 Mathematical Formulation226
9.2.1 Construction of the Networks226
9.2.2 Formulation227
9.2.3 Service Quality228
9.2.4 Reduction of the Network Size228
9.3 Heuristics229
9.3.1 Construction and Improvement229
9.3.2 Clustering Algorithms230
9.3.3 Metaheuristics230
9.3.4 Neural Network Heuristics231
9.3.5 Theoretical Analysis of Algorithms231
9.4 Optimization-Based Approaches232
9.4.1 Single Vehicle Cases232
9.4.2 Multiple Vehicle Cases234
9.5 Applications236
9.6 Computational Results236
9.7 Conclusions237
Bibliography238
Ⅲ Applications and Case Studies243
10 Routing Vehicles in the Real World:Applications in the Solid Waste,Beverage,Food,Dairy,and Newspaper Industries&B.L. Golden,A.A. Assad,E.A. Wasil245
10.1 Introduction245
10.2 Computerized Vehicle Routing in the Solid Waste Industry247
10.2.1 History247
10.2.2 Background247
10.2.3 Commercial Collection249
10.2.4 Residential Collection250
10.2.5 Case Studies250
10.2.6 Roll-on-Roll-off252
10.2.7 Further Remarks254
10.3 Vehicle Routing in the Beverage,Food,and Dairy Industries254
10.3.1 Introduction254
10.3.2 Beverage Industry255
10.3.3 Food Industry259
10.3.4 Dairy Industry260
10.4 Distribution and Routing in the Newspaper Industry266
10.4.1 Industry Background266
10.4.2 Newspaper Distribution Problem268
10.4.3 Vehicle Routing Algorithms for NDP271
10.4.4 Three Case Studies276
10.4.5 Further Remarks280
10.5 Conclusions280
Bibliography281
11 Capacitated Arc Routing Problem with Vehicle-Site Dependencies:The Philadelphia Experience&J. Sniezek,L. Bodin,L. Levy,M. Ball287
11.1 Introduction287
11.2 Networks,Assumptions,and Goals of the CARP-VSD288
11.2.1 Travel Network288
11.2.2 Service Network289
11.2.3 Vehicle Classes290
11.2.4 Travel Network and Service Network for a Vehicle Class291
11.2.5 Vehicle Preference List291
11.2.6 Other Assumptions292
11.2.7 Goals and Constraints of the CARP-VSD292
11.3 Vehicle Decomposition Algorithm(VDA)293
11.3.1 Step A. Create and Verify Vehicle Class Networks293
11.3.2 Step B. Estimate Total Work and Determine Initial Fleet Mix294
11.3.3 Step C. Partition the Service Network301
11.3.4 Step D. Determine Travel Path and Balance the Partitions304
11.3.5 Step E. Revise Estimate of Total Work and Adjust Fleet Mix305
11.4 Implementation of the VDA in Philadelphia305
11.5 Enhancements and Extensions307
Bibliography308
12 Inventory Routing in Practice&Ann M. Campbell,Lloyd W. Clarke,Martin W.P. Savelsbergh309
12.1 Introduction309
12.2 Problem Definition310
12.3 Literature Review311
12.4 Solution Approach313
12.4.1 Phase Ⅰ:Integer Programming Model313
12.4.2 Phase Ⅰ:Solving the Integer Programming Model315
12.4.3 Phase Ⅱ:Scheduling316
12.5 Computational Experience319
12.5.1 Instances319
12.5.2 Solution Quality322
12.5.3 Alternate Heuristic324
12.5.4 Computational Experiments324
12.6 Conclusion327
Bibliography329
13 Routing Under Uncertainty:An Application in the Scheduling of Field Service Engineers&E. Hadjiconstantinou,D. Roberts331
13.1 Introduction331
13.2 VRPSST with Vailable Costs of Recourse332
13.3 Literature Review332
13.3.1 VRPST333
13.3.2 VRPSD333
13.4 Stochastic Integer VRPSST Formulation334
13.4.1 First-Stage Problem334
13.4.2 Second-Stage Problem335
13.5 Paired Tree Search Algorithm(PTSA)336
13.5.1 Linked Trees337
13.5.2 Lower Bounds337
13.5.3 Computational Implementation339
13.6 Applied Maintenance Scheduling Problem339
13.6.1 Maintenance Scheduling System in Practice340
13.6.2 Stochastic Problem Setting340
13.7 Modeling the Applied Problem as a VRPSST341
13.8 Model Input342
13.8.1 Job Locations and the Road Network342
13.8.2 Service Times342
13.9 Model Output:Computational Considerations343
13.9.1 Framework for the Analysis of Results343
13.9.2 Reoptimization344
13.10 Example Scenario345
13.11 Overall Computational Results348
13.12 Conclusion350
Bibliography350
14 Evolution of Microcomputer-Based Vehicle Routing Software:Case Studies in the United States&E.K. Baker353
14.1 Introduction353
14.2 Definition of the VRP356
14.2.1 Customer Specification356
14.2.2 Product Specification357
14.2.3 Vehicle Specification357
14.3 Algorithms358
14.4 Future Trends in Vehicle Routing Software358
14.5 Summary and Conclusions360
Bibliography360
Index363