图书介绍
Linear Algebra and Group TheoryPDF|Epub|txt|kindle电子书版本网盘下载
![Linear Algebra and Group Theory](https://www.shukui.net/cover/52/31662041.jpg)
- 著
- 出版社: Inc.
- ISBN:
- 出版时间:1961
- 标注页数:464页
- 文件大小:90MB
- 文件页数:474页
- 主题词:
PDF下载
下载说明
Linear Algebra and Group TheoryPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
PART Ⅰ:DETERMINANTS AND SYSTEMS OF EQUATIONS1
Chapter 1.Determinants and Their Properties3
1.The Concept of a Determinant3
2.Permutations7
3.Basic Properties of Determinants12
4.Calculation of Determinants17
5.Examples18
6.The Multiplication Theorem for Determinants24
7.Rectangular Matrices27
Problems31
Chapter 2.Solution of Systems of Linear Equations42
8.Cramer's Rule42
9.The General Case43
10.Homogeneous Systems48
11.Linear Forms50
12.n-Dimensional Vector Space52
13.The Scalar Product58
14.Geometrical Interpretation of Homogeneous Systems60
15.Inhomogeneous Systems63
16.The Gram Determinant.Hadamard's Inequality66
17.Systems of Linear Differential Equations with Constant Coefficients70
18.Jacobians75
19.Implicit Functions78
Problems83
PART Ⅱ:MATRIX THEORY93
Chapter 3.Linear Transformations95
20.Coordinate Transformations in Three Dimensions95
21.General Linear Transformations in Three Dimensions99
22.Covariant and Contravariant Affine Vectors106
23.The Tensor Concept109
24.Cartesian Tensors113
25.The n-Dimensional Case116
26.Elements of Matrix Algebra120
27.Eigenvalues of a Matrix.Reduction of a Matrix to Canonical Form125
28.Unitary and Orthogonal Transformations130
29.Schwarz's Inequality135
30.Properties of the Scalar Product and Norm137
31.The Orthogonalization Process for Vectors138
Problems140
Chapter 4.Quadratic Forms149
32.Reduction of a Quadratic Form to a Sum of Squares149
33.Multiple Roots of the Characteristic Equation153
34.Examples157
35.Classification of Quadratic Forms160
36.Jacobi's Formula165
37.Simultaneous Reduction of Two Quadratic Forms to Sums of Squares166
38.Small Oscillations168
39.Extremal Properties of the Eigenvalues of a Quadratic Form170
40.Hermitian Matrices and Hermitian Forms173
41.Commuting Hermitian Matrices178
42.Reduction of Unitary Matrices to Diagonal Form180
43.Projection Matrices185
44.Functions of Matrices190
Problems193
Chapter 5.Infinite-Dimensional Spaces201
45.Infinite-Dimensional Spaces201
46.Convergence of Vectors206
47.Complete Systems of Orthonormal Vectors210
48.Linear Transformations in Infinitely Many Variables214
49.Function Space218
50.Relation between the Spaces F and H221
51.Linear Operators224
Problems230
Chapter 6.Reduction of Matrices to Canonical Form234
52.Preliminary Considerations234
53.The Case of Distinct Roots240
54.The Case of Multiple Roots.First Step in the Reduction242
55.Reduction to Canonical Form245
56.Determination of the Structure of the Canonical Form251
57.An Example254
Problems260
PART Ⅲ:GROUP THEORY265
Chapter 7.Elements of the General Theory of Groups267
58.Groups of Linear Transformations267
59.The Polyhedral Groups270
60.Lorentz Transformations273
61.Permutations279
62.Abstract Groups283
63.Subgroups286
64.Classes and Normal Subgroups289
65.Examples292
66.Isomorphic and Homomorphic Groups294
67.Examples296
68.Stereographic Projection298
69.The Unitary Group and the Rotation Group300
70.The Unimodular Group and the Lorentz Group305
Problems309
Chapter 8.Representations of Groups315
71.Representation of Groups by Linear Transformations315
72.Basic Theorems319
73.Abelian Groups and One-Dimensional Representations323
74.Representations of the Two-Dimensional Unitary Group325
75.Representations of the Rotation Group331
76.Proof That the Rotation Group Is Simple334
77.Laplace's Equation and Representations of the Rotation Group336
78.The Direct Product of Two Matrices341
79.The Direct Product of Two Representations of a Group343
80.The Direct Product of Two Groups and its Representations346
81.Reduction of the Direct Product Dj×Dj' of Two Representations of the Rotation Group349
82.The Orthogonality Property355
83.Characters359
84.The Regular Representation of a Group365
85.Examples of Representations of Finite Groups367
86.Representations of the Two-Dimensional Unimodular Group370
87.Proof That the Lorentz Group Is Simple374
Problems375
Chapter 9.Continuous Groups381
88.Continuous Groups.Structure Constants381
89.Infinitesimal Transformations385
90.The Rotation Group388
91.Infinitesimal Transformations and Representations of the Rotation Group390
92.Representations of the Lorentz Group394
93.Auxiliary Formulas397
94.Construction of a Group from its Structure Constants400
95.Integration on a Group.The Orthogonality Property402
96.Examples409
Problems415
Appendix419
Bibliography429
Hints and Answers431
Index459