图书介绍
几何分析手册 第2卷 英文版PDF|Epub|txt|kindle电子书版本网盘下载
![几何分析手册 第2卷 英文版](https://www.shukui.net/cover/24/30231922.jpg)
- 季理真等主编 著
- 出版社: 北京:高等教育出版社
- ISBN:9787040288834
- 出版时间:2010
- 标注页数:431页
- 文件大小:19MB
- 文件页数:449页
- 主题词:几何-数学分析-手册-英文
PDF下载
下载说明
几何分析手册 第2卷 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Heat Kernels on Metric Measure Spaces with Regular Volume Growth&Alexander Grigor'yan1
1 Introduction1
1.1 Heat kernel in Rn2
1.2 Heat kernels on Riemannian manifolds3
1.3 Heat kernels of fractional powers of Laplacian4
1.4 Heat kernels on fractal spaces5
1.5 Summary of examples7
2 Abstract heat kernels8
2.1 Basic definitions8
2.2 The Dirichlet form11
2.3 Identifying Ф in the non-local case13
2.4 Volume of balls17
3 Besov spaces21
3.1 Besov spaces in Rn21
3.2 Besov spaces in a metric measure space23
3.3 Embedding of Besov spaces into H?lder spaces24
4 The energy domain26
4.1 A local case26
4.2 Non-local case31
4.3 Subordinated heat kernel32
4.4 Bessel potential spaces35
5 The walk dimension36
5.1 Intrinsic characterization of the walk dimension36
5.2 Inequalities for the walk dimension39
6 Two-sided estimates in the local case46
6.1 The Dirichlet form in subsets46
6.2 Maximum principles47
6.3 A tail estimate47
6.4 Identifying Ф in the local case55
References57
A Convexity Theorem and Reduced Delzant Spaces&Bong H.Lian,Bailin Song61
1 Introduction61
2 Convexity of image of moment map64
3 Rationality of moment polytope69
4 Realizing reduced Delzant spaces74
5 Classification of reduced Delzant spaces82
References94
Localization and some Recent Applications&Bong H.Lian,Kefeng Liu97
1 Introduction97
2 Localization100
3 Mirror principle102
4 Hori-Vafa formula112
5 The Mari?o-Vafa Conjecture115
6 Two partition formula123
7 Theory of topological vertex125
8 Gopakumar-Vafa conjecture and indices of elliptic operators128
9 Two proofs of the ELSV formula129
10 A localization proof of the Witten conjecture132
11 Final remarks134
References134
Gromov-Witten Invariants of Toric Calabi-Yau Threefolds&Chiu-Chu Melissa Liu139
1 Gromov-Witten invariants of Calabi-Yau 3-folds139
1.1 Symplectic and algebraic Gromov-Witten invariants139
1.2 Moduli space of stable maps139
1.3 Gromov-Witten invariants of compact Calabi-Yau 3-folds140
1.4 Gromov-Witten invariants of noncompact Calabi-Yau 3-folds141
2 Traditional algorithm in the toric case142
2.1 Localization142
2.2 Hodge integrals143
3 Physical theory of the topological vertex144
4 Mathematical theory of the topological vertex146
4.1 Locally planar trivalent graph146
4.2 Formal toric Calabi-Yau(FTCY)graphs148
4.3 Degeneration formula150
4.4 Topological vertex152
4.5 Localization153
4.6 Framing dependence154
4.7 Combinatorial expression154
4.8 Applications155
4.9 Comparison155
5 GW/DT correspondences and the topological vertex156
Acknowledgments156
References156
Survey on Affine Spheres&John Loftin161
1 Introduction161
2 Affine structure equations163
3 Examples164
4 Two-dimensional affine spheres and Titeica's equation165
5 Monge-Ampère equations and duality168
6 Global classification of affine spheres172
7 Hyperbolic affine spheres and invariants of convex cones173
8 Projective manifolds176
9 Affinc manifolds181
10 Affine maximal hypersurfaces185
11 Affine normal flow186
References187
Convergence and Collapsing Theorems in Riemannian Geometry&Xiaochun Rong193
Introduction193
1 Gromov-Hausdorff distance in space of metric spaces194
1.1 The Gronov-Hausdorff distance194
1.2 Examples199
1.3 An alternative formulation of GH-distance202
1.4 Compact subsets of(Met,dGH)204
1.5 Equivariant GH-convergence206
1.6 Pointed GH-convergence209
2 Smooth limits-fibrations217
2.1 The fibration theorem217
2.2 Sectional curvature comparison219
2.3 Embedding via distance functions223
2.4 Fibrations226
2.5 Proof of theorem 2.1.1231
2.6 Center of mass234
2.7 Equivariant fibrations235
2.8 Applieations of the fibration theorem240
3 Convergence theorems245
3.1 Cheeger-Gromov's convergence theorem245
3.2 Injectivity radius estimate248
3.3 Some elliptic estimates253
3.4 Harmonic radius estimate255
3.5 Smoothing metrics259
4 Singular limits-singular fibrations260
4.1 Singular fibrations261
4.2 Controlled homotopy structure by geometry265
4.3 The π2-finiteness theorem269
4.4 Collapsed manifolds with pinched positive sectional curvature271
5 Almost flat manifolds273
5.1 Gromov's theorem on almost flat manifolds273
5.2 The Margulis lemma275
5.3 Flat connections with small torsion277
5.4 Flat connection with a parallel torsion281
5.5 Proofs—part Ⅰ285
5.6 Proofs—part Ⅱ290
5.7 Refined fibration theorem294
References297
Geometric Transformations and Soliton Equations&Chuu-Lian Terng301
1 Introduction301
2 The moving frame method for submanifolds306
3 Line congruences and B?cklund transforms309
4 Sphere congruences and Ribaucour transforms315
5 Combescure transforms,O-surfaces,and k-tuples317
6 From moving frame to Lax pair320
7 Soliton hierarchies constructed from symmetric spaces329
8 The U/K-system and the Gauss-Codazzi equations336
9 Loop group actions343
10 Action of simple elements and geometric transforms347
References355
Affine Integral Geometry from a Differentiable Viewpoint&Deane Yang359
1 Introduction359
2 Basic definitions and notation361
2.1 Linear group actions361
3 Objects of study362
3.1 Geometric setting362
3.2 Convex body362
3.3 The space of all convex bodies362
3.4 Valuations362
4 Overall strategy363
5 Fundamental constructions363
5.1 The support function363
5.2 The Minkowski sum364
5.3 The polar body365
5.4 The inverse Gauss map366
5.5 The second fundamental form366
5.6 The Legendre transform366
5.7 The curvature function367
6 The homogeneous contour integral368
6.1 Homogeneous functions and differential forms368
6.2 The homogeneous contour integral for a differential form369
6.3 The homogeneous contour integral for a measure369
6.4 Homogeneous integral calculus373
7 An explicit construction of valuations374
7.1 Duality375
7.2 Volume375
8 Classification of valuations376
9 Scalar valuations376
9.1 SL(n)-invariant valuations376
9.2 Hug's theorem378
10 Continuous GL(n)-homogeneous valuations378
10.1 Scalar valuations378
10.2 Vector-valued valuations379
11 Matrix-valued valuations380
11.1 The Cramer-Rao inequality381
12 Homogeneous function-and convex body-valued valuations383
13 Questions384
References385
Classification of Fake Projective Planes&Sai-Kee Yeung391
1 Introduction391
2 Uniformization of fake projective planes393
3 Geometric estimates on the number of fake projective planes396
4 Arithmeticity of lattices associated to fake projective planes398
5 Covolume formula of Prasad410
6 Formulation of proof411
7 Statements of the results419
8 Further studies423
References427