图书介绍
利率衍生物定价的有效方法 英文PDF|Epub|txt|kindle电子书版本网盘下载
![利率衍生物定价的有效方法 英文](https://www.shukui.net/cover/44/30614182.jpg)
- (荷)佩尔森(PelsserA.)著 著
- 出版社: 北京;西安:世界图书出版公司
- ISBN:9787510058394
- 出版时间:2013
- 标注页数:172页
- 文件大小:25MB
- 文件页数:183页
- 主题词:利率-衍生物-价值-计算方法-英文
PDF下载
下载说明
利率衍生物定价的有效方法 英文PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1.Introduction1
2.Arbitrage,Martingales and Numerical Methods5
2.1 Arbitrage and Martingales6
2.1.1 Basic Setup6
2.1.2 Equivalent Martingale Measure8
2.1.3 Change of Numeraire Theorem10
2.1.4 Girsanov's Theorem and It?'s Lemma11
2.1.5 Application:Black-Scholes Model12
2.1.6 Application:Foreign-Exchange Options14
2.2 Numerical Methods16
2.2.1 Derivation of Black-Scholes Partial Differential Equation16
2.2.2 Feynman-Kac Formula17
2.2.3 Numerical Solution of PDE's18
2.2.4 Monte Carlo Simulation18
2.2.5 Numerical Integration20
Part Ⅰ.Spot and Forward Rate Models23
3.Spot and Forward Rate Models23
3.1 Vasicek Methodology23
3.1.1 Spot Interest Rate23
3.1.2 Partial Differential Equation24
3.1.3 Calculating Prices25
3.1.4 Example:Ho-Lee Model26
3.2 Heath-Jarrow-Morton Methodology27
3.2.1 Forward Rates27
3.2.2 Equivalent Martingale Measure28
3.2.3 Calculating Prices29
3.2.4 Example:Ho-Lee Model30
3.3 Equivalence of the Methodologies30
4.Fundamental Solutions and the Forward-Risk-Adjusted Measure31
4.1 Forward-Risk-Adjusted Measure32
4.2 Fundamental Solutions34
4.3 Obtaining Fundamental Solutions36
4.4 Example:Ho-Lee Model37
4.4.1 Radon-Nikodym Derivative37
4.4.2 Fundamental Solutions38
4.5 Fundamental Solutions for Normal Models40
5.The Hull-White Model45
5.1 Spot Rate Process46
5.1.1 Partial Differential Equation47
5.1.2 Transformation of Variables47
5.2 Analytical Formul?48
5.2.1 Fundamental Solutions49
5.2.2 Option Prices50
5.2.3 Prices for Other Instruments51
5.3 Implementation of the Model52
5.3.1 Fitting the Model to the Initial Tern-Structure52
5.3.2 Transformation of Variables53
5.3.3 Trinomial Tree53
5.4 Performance of the Algorithm55
5.5 Appendix57
6.The Squared Gaussian Model59
6.1 Spot Rate Process60
6.1.1 Partial Differential Equation60
6.2 Analytical Formul?61
6.2.1 Fundamental Solutions62
6.2.2 Option Prices63
6.3 Implementation of the Model64
6.3.1 Fitting the Model to the Initial Term-Structure64
6.3.2Trinomial Tree66
6.4 Appendix A66
6.5 Appendix B69
7.An Empirical Comparison of One-Factor Models71
7.1 Yield-Curve Models72
7.2 Econometric Approach74
7.3 Data77
7.4 Empirical Results77
7.5 Conclusions84
Part Ⅱ.Market Rate Models87
8.LIBOR and Swap Market Models87
8.1 LIBOR Market Models88
8.1.1 LIBOR Process88
8.1.2 Caplet Price89
8.1.3 Terminal Measure90
8.2 Swap Market Models91
8.2.1 Interest Rate Swaps92
8.2.2 Swaption Price93
8.2.3 Terminal Measure95
8.2.4 T1-Forward Measure96
8.3 Monte Carlo Simulation for LIBOR Market Models97
8.3.1 Calculating the Numeraire Rebased Payoff98
8.3.2 Example:Vanilla Cap99
8.3.3 Discrete Barrier Caps/Floors100
8.3.4 Discrete Barrier Digital Caps/Floors102
8.3.5 Payment Stream103
8.3.6 Ratchets103
8.4 Monte Carlo Simulation for Swap Market Models104
8.4.1 Terminal Measure104
8.4.2 T1-Forward Measure105
8.4.3 Example:Spread Option106
9. Markov-Functional Models109
9.1 Basic Assumptions110
9.2 LIBOR Markov-Functional Model111
9.3 Swap Markov-Functional Model114
9.4 Numerical Implementation115
9.4.1 Numerical Integration115
9.4.2 Non-Parametric Implementation117
9.4.3 Semi-Parametric Implementation118
9.5 Forward Volatilities and Auto-Correlation120
9.5.1 Mean-Reversion and Auto-Correlation120
9.5.2 Auto-Correlation and the Volatility Function121
9.6 LIBOR Example:Barrier Caps121
9.6.1 Numerical Calculation121
9.6.2 Comparison with LIBOR Market Model123
9.6.3 Impact of Mean-Reversion124
9.7 LIBOR Example:Chooser-and Auto-Caps125
9.7.1 Auto-Caps/Floors125
9.7.2 Chooser-Caps/Floors125
9.7.3 Auto-and Chooser-Digitals125
9.7.4 Numerical Implementation125
9.8 Swap Example:Bermudan Swaptions127
9.8.1 Early Notification127
9.8.2 Comparison Between Models128
10.An Empirical Comparison of Market Models131
10.1 Data Description132
10.2 LIBOR Market Model132
10.2.1 Calibration Methodology132
10.2.2 Estimation and Pricing Results134
10.3 Swap Market Model135
10.3.1 Calibration Methodology135
10.3.2 Estimation and Pricing Results135
10.4 Conclusion136
11.Convexity Correction139
11.1 Convexity Correction and Change of Numeraire140
11.1.1 Multi-Currency Change of Numeraire Theorem140
11.1.2 Convexity Correction142
11.2 Options on Convexity Corrected Rates145
11.2.1 Option Price Formula146
11.2.2 Digital Price Formula147
11.3 Single Index Products147
11.3.1 LIBOR in Arrears147
11.3.2 Constant Maturity Swap149
11.3.3 Diffed LIBOR150
11.3.4 Diffed CMS150
11.4 Multi-Index Products151
11.4.1 Rate Based Spread Options151
11.4.2 Spread Digital153
11.4.3 Other Multi-Index Products153
11.4.4 Comparison with Market Models154
11.5 A Warning on Convexity Correction155
11.6 Appendix:Linear Swap Rate Model156
12.Extensions and Further Developments159
12.1 General Philosophy159
12.2 Multi-Factor Models160
12.3 Volatility Skews161
References163
Index167